

EMISSION MONITORING REPORT

September 2025 COMPLIANCE SURVEY

Permit: GVA1145

Prepared by: Mr. C. Lanfranco Issued on: September 24, 2025

CERTIFICATION

The field monitoring for this survey was conducted by certified stack test technicians as required by the British Columbia Ministry of Environment and Parks (BC MOE) Field Sampling Manual.

The field crew consisted of:

Mr. J. Ching (certified), Mr. J. Gibbs (certified), and Mr. D. Sampson (certified).

The report was prepared by Mr. C. Lanfranco (certified) using reporting principles and guidelines generally acceptable to B.C. MOE and Metro Vancouver (MV).

The field crew and A. Lanfranco and Associates Inc. certify that the test methods used were MOE/MV approved reference methods for the parameters investigated.

Report reviewed on September 24 2025, by:

Mr. Mark Lanfranco President | Owner

TABLE OF CONTENTS SUMMARY 1 1 TEST PROGRAM ORGANIZATION and INTRODUCTION 2 2 PROCESS DESCRIPTION 3 3 **METHODOLOGY** 3 **Sampling Techniques** 3.1 3 **Analytical Techniques** 3.2 8 **RESULTS** 5 **DISCUSSION OF RESULTS** 11 **APPENDICES** Appendix 1 – CEM Minutely Averages and Computer Outputs of Measured and Calculated Data **Appendix 2** – Calculations **Appendix 3** – Analytical Data **Appendix 4** – Field Data Sheets

Appendix 5 – Calibration Data and Certifications

SUMMARY

The following table presents the average emission results for the listed parameters. The emission survey was conducted at the All-Roads Construction hot mix asphalt plant in Coquitlam, B.C. on September 11, 2025.

PARAMETER	RESULT	PERMITTED LEVEL
Particulate (mg/Sm ³ @ 16% O ₂)	0.37	30
Carbon Monoxide (mg/Sm ³ @ 16% O ₂)	65.4	200
Total Hydrocarbons (mg/Sm ³ @ 16% O ₂)	13.5	40
Flowrate (Sm ³ /min)	529	870
Temperature (°C)	86	

All results are at standard conditions of 20 °C and 101.325 kPa (dry)

There are no permit exceedances, and the results are like previous testing. The differences year to year are in a normal range of outcomes for this process.

1 TEST PROGRAM ORGANIZATION and INTRODUCTION

Plant Test Coordinator: Mr. Dennis Eby

Plant Manager

All Roads Construction Ltd.

D.Eby@allroadsconstruction.com

Sampling Coordinator: Mr. Mark Lanfranco

President | Owner

A. Lanfranco and Associates Inc.

(604) 881-2582

mark.lanfranco@alanfranco.com

Sampling Crew: Mr. D. Sampson – A. Lanfranco and Associates Inc.

Mr. J. Gibbs – A. Lanfranco and Associates Inc.

Mr. J. Ching – A. Lanfranco and Associates Inc.

In September 2025, All Roads commissioned A. Lanfranco and Associates Inc. of Surrey, B.C. to conduct an emission survey on the baghouse stack at their Coquitlam asphalt plant.

The purpose of the survey was to measure and report various emission parameters from the asphalt manufacturing process. The testing was conducted to determine compliance with permitted particulate matter, carbon monoxide, and organics discharges at 16% O₂. The emission limits are stipulated in All Roads Permit GVA1145.

This report documents the methods used and results found for the triplicate one-hour emission tests that were conducted on September 11th, 2025.

2 PROCESS DESCRIPTION

The All Roads hot mix asphalt plant, located at 2320 Rogers Avenue in Coquitlam, B.C. is a rotary drum mix asphalt plant. The unit is a natural gas fired Gencor Ultra II drum burner.

Dust laden flue gases generated in the mixer and dryer are cleaned by a Gencor CFS151 Baghouse. Following the fabric filtration, cleaned flue gases are discharged to atmosphere through a 1.37-meter stack which is monitored by a Dwyer real time particulate monitoring system. An ID fan is employed in the system.

On September 11, 2025, the plant maintained an average production rate of about 210 tonnes/ hr during the monitoring.

3 METHODOLOGY

The sampling and analytical methods used throughout this survey conform to the procedures outlined in the B.C. "Source Testing Code" 2020 Edition and the B.C. air analytical manual.

3.1 <u>Sampling Techniques</u>

Samples from the main stack were collected from two ports located at 90 degrees to each other. Particulate samples were taken with an APEX sample train (Fig. 1) equipped with a heated five-foot stainless-steel probe and heated filter assembly. The sample ports were about 3.5 diameters downstream and 1.0 diameters upstream of the nearest disturbances. From these criteria a 24-point, two traverse sampling regime was established for the particulate tests (Fig. 2 and 2a). Each point was sampled for two and one-half minutes resulting in the final sample volumes of about 1.2 cubic meters.

Velocities were measured with an S-type pitot tube and oil manometer. The probe and connecting glassware were brushed and rinsed with distilled water and acetone into a glass sample bottle after sample completion. Flue gas analysis (O₂ and CO₂) was conducted with Fyrite analysers and an online CEM system. Cyclonic flow was <u>not</u> present in the stack.

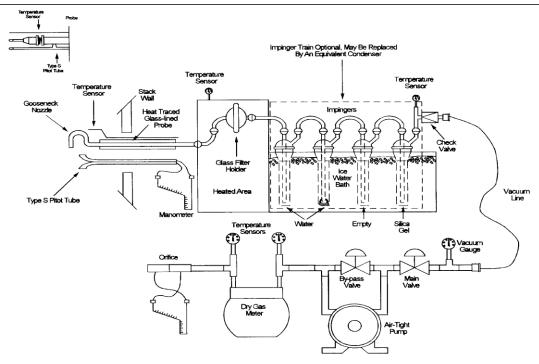
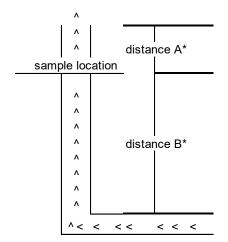


Figure 1: EPA Method 5 Particulate Sampling Train

Figure - 2 Location of Traverse Points in Circular Stacks

(inches from inside wall to traverse point)

Client Stack I.D.: All Roads - Baghouse


Diameter (inches) 54 Total Points 24

Total Points 24 Diameters Upstream: 1

of Ports Used 2

Points / Traverse 12 Diameters Downstream: 3.5

Point	Distance from Wall
1	1.1
2	3.6
3	6.4
4	9.6
5	13.5
6	19.2
7	34.8
8	40.5
9	44.4
10	47.6
11	50.4
12	52.9

* distance A : duct diameters upstream from flow disturbance
 * distance B : duct diameters downstream from flow disturbance

< < < : flow direction

Figure 2a <u>Location of Traverse Points in Circular Stacks</u>

(percent of diameter from inside wall to traverse point)

Traverse Point Number on a	Number of Traverse Points on a Diameter						
Diameter	2	4	6	8	10	12	
1	14.6%	6.7%	4.4%	3.2%	2.6%	2.1%	
2	85.4%	25.0%	14.6%	10.5%	8.2%	6.7%	
3		75.0%	29.6%	19.4%	14.6%	11.8%	
4		93.3%	70.4%	32.3%	22.6%	17.7%	
5			85.4%	67.7%	34.2%	25.0%	
6			95.6%	80.6%	65.8%	35.6%	
7				89.5%	77.4%	64.4%	
8				96.8%	85.4%	75.0%	
9					91.8%	82.3%	
10					97.4%	88.2%	
11						93.3%	
12						97.9%	

CEM System for Organics, CO and O₂

Continuous emission monitoring (CEM) was conducted for Organics (THC)/CO/O₂/CO₂ using A. Lanfranco and Associates Inc. CEM mobile laboratory. This unit is a trailer with the following instrumentation:

Name	CAI ZPA Analyzer	VIG FID	NOxygen
Manufacturer	California Analytical	Vig Industries, Inc.	California Analytical
1viunuiuctui ci	Instruments	vig maastres, me.	Instruments
Model	ZPA	20SHy10NAQT	650 NOxygen
Serial	N0C0606	7860819	U06080
Number		, 600013	
Parameters	O ₂ , SO ₂ , CO ₂ , CO	THC, VOC	NO_x, O_2
Ranges	O ₂ : 0-25%, CO ₂ : 0-40%, SO ₂ : 0-200 or 0-2000 ppm, CO: 0-500 or 0-2500 ppm	0-10, 0-100, 0-1000, or 0- 10000 ppm	NO/NO _x : 0-1 to 3000 ppm (user defined), O ₂ : 0-25%
Analyzer Type	NDIR (non-dispersive infrared) and paramagnetic	FID - Flame Ionizing Detector	Chemilumunescent and paramagnetic
Description	This instrument measures the concentration of SO ₂ , CO ₂ , and CO contained in sampling gas on the principle that different atomic molecules have an absorption spectrum in the wave band of infrared rays, and the intensity of absorption is determined by the Lambert-Beer law. O ₂ is measured with a separate paramagnetic sensor	The Total Hydrocarbon Analyzer Model-20-S measures concentrations of a wide variety of hydrocarbons in gas mixtures and in air using a Heated Flame Ionization Detector (FID). The process starts with a hydrogen flame. The resulting flame burns such a temperature as to pyrolyze most organic compounds producing ions and electrons in proportion to the concentration of carbon atoms present. Two plates are presented to the ions, one plate is electrically charged, the other plate, the collector is attached to a current to voltage amplifier. The ions are attracted to the ions cause a current to be induced.	The CAI Model 650 NOx/O2 Analyzer is a highly sensitive chemiluminescent (CLD) gas analyzer and a reliable paramagnetic oxygen analyzer. It measures oxides of nitrogen gas and dry basis oxygen concentrations in industrial and vehicle emission applications.

A diagram of the sampling, conditioning and analyzer system is provided in Figure 3. With this system the stack gas is withdrawn from the source through a coarse filter and stainless steel probe with associated pumps, filters and water removal components. The THC analyzer withdrew a side-stream of the filtered gas for hot FID analysis.

Prior to compliance testing and between each test all measuring instrumentation was calibrated with Protocol 1 and NIST Traceable, 1% certified calibration gas standards. Calibration gas certificates are appended.

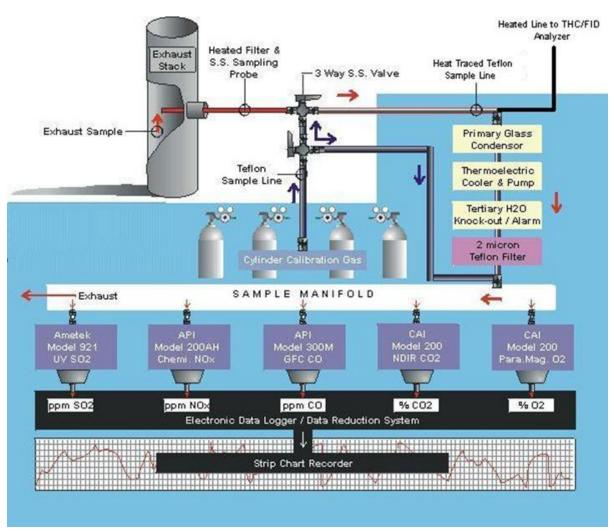


Figure 3 – CEM Measurement System Schematic

3.2 Analytical Techniques

Gravimetric analysis of the particulate samples was conducted by A. Lanfranco and Associates Inc. at their Surrey laboratory. The filters were conditioned by drying at 105 °C and desiccating for 24 hours. Final weighing of the filter occurred after the conditioning process, at which time the initial weight of the filter was subtracted. Probe washings were evaporated to dryness in porcelain dishes, desiccated for 24 hours and weighed. Blanks were carried through all procedures

CEM data was collected by data acquisition system by comparing stack gas responses to calibration gas responses.

Calibration gas mixtures used were:

Cylinder	Cylinder		Pressure	THC	CO	O_2	CO_2
Name	NIST Number	Expiry Date	(PSI)	(ppm)	(ppm)	(Vol. %)	(Vol. %)
Zero Gas (N ₂)	4695672Y	1-May-30	1300	0	0	0	0
1 Gas	T2Y1K9P	15-Apr-32	200	-	494.2	-	-
2 Gas	T267UHE	20-May-28	1300	-	243.5	-	-
Mid Meth	CC137247	6-Feb-32	1125	45.05	-	-	-
High Meth	CC341054	18-Jan-26	950	87.5	-	-	-
O_2/CO_2	T47DLD9	7-Jul-33	1600	-	-	11.05	10.91

4 RESULTS

The results of the particulate and stack parameters were calculated using a computer program consistent with reporting requirements of Metro Vancouver. Standard conditions used were 20 °C and 101.325 kPa (dry).

Detailed test results are presented in Table 1. Supporting data is presented in Tables 2, 3 and the Appendices. CEM minutely averages are presented in Appendix 1. Corrections to 16% O₂ were made with CEM data. Total Hydrocarbons are expressed as Methane (CH₄).

TABLE 1: Baghouse Stack Emission Test Results

Parameter		Test 1	Test 2	Test 3	Average
Test Date		11-Sep-25	11-Sep-25	11-Sep-25	
Test Time		19:00 - 20:02	20:15 - 21:17	21:36 - 22:38	
CEM Test Time		19:00 - 20:00	20:15 - 21:15	21:36 - 22:36	
Duration	(minutes)	60	60	60	
Th	(0.46	0.61	0.25	0.40
Particulate	(mg/Sm^3)	0.46	0.61	0.37	0.48
Particulate	$(mg/Sm^3 @ 16\% O_2)$	0.35	0.49	0.28	0.37
Particulate	(kg/hr)	0.01	0.02	0.01	0.02
Particulate	(kg/day)	0.33	0.49	0.29	0.37
Flowrate	(Sm ³ /min)	492	549	547	529
Flowrate	(Am³/min)	889	863	867	873
Temperature	(°C)	87	85	87	86
CO	(mg/Sm ³ @ 16% O ₂)	51.8	63.5	80.9	65.4
THC	(mg/Sm ³ @ 16% O ₂)	9.6	11.6	19.4	13.5
O_2	(vol % dry)	14.5	14.8	14.4	14.6
CO_2	(vol % dry)	3.80	3.66	3.83	3.76
H_2O	(vol %)	32.0	22.3	22.6	25.6
Isokinetic Variation	n (%)	105	97.0	97.3	100
THC O_2 CO_2 H_2O	(mg/Sm ³ @ 16% O ₂) (vol % dry) (vol % dry) (vol %)	9.6 14.5 3.80 32.0	11.6 14.8 3.66 22.3	19.4 14.4 3.83 22.6	13.5 14.6 3.76 25.6

Standard conditions (S) of 20 °C and 101.325 kPa dry

TABLE 2: PROCESS OPERATING CONDITIONS

Run	Date	Run Time	Production Rate (Tonnes/hr)	Mix Temp. (°C)	RAP
Run 1	11-Sep-25	19:00 - 20:02	210	158	18%
Run 2	11-Sep-25	20:15 - 21:17	210	157	18%
Run 3	11-Sep-25	21:36 - 22:38	220	155	18%
Average			213	157	18%

TABLE 3: GRAMS PER TONNE OF ASPHALT

Parameter	Mass Emission (grams/tonne of asphalt)	
Particulate Matter	0.06	
Carbon Monoxide	9.7	
Total Hydrocarbons	2.02	

5 DISCUSSION OF RESULTS

Particulate emissions from the asphalt plant ranged from 0.28 to 0.49 mg/Sm³ at 16% O₂, averaging 0.37 mg/Sm³ at 16% O₂. This is well below the permitted level of 30 mg/Sm³ @ 16% O₂ and indicates that the particulate abatement system is functioning at an acceptable level.

The carbon monoxide, organics, volumetric flowrate and particulate for this survey are in compliance with All Roads Construction Ltd. Permit GVA1145 dated August 30, 2022.

There were no problems encountered in sample collection or analysis. Particulate samples were collected isokinetically at all points and the process operated in a normal manner during testing. The test results, therefore, are considered to be an accurate representation of emission characteristics for the process conditions maintained on the test date.

APPENDIX 1 COMPUTER OUTPUTS of MEASURED and CALCULATED DATA

Client:All RoadsDate:11-Sep-25Jobsite:Coquitlam, BCRun:1 - ParticulateSource:Baghouse StackRun Time:19:00 - 20:02

Particulate Concentration: 0.5 mg/dscm 0.0002 gr/dscf

0.3 mg/Acm 0.0001 gr/Acf

Emission Rate: 0.01 kg/hr 0.030 lb/hr

Sample Gas Volume: 1.1886 dscm 41.976 dscf

Total Sample Time: 60.0 minutes

Average Isokineticity: 105.4 %

Flue Gas Characteristics

Moisture: 31.99 %

Temperature 87.4 oC 189.3 oF

Flow 491.9 dscm/min 17370 dscf/min

8.20 dscm/sec 289.5 dscf/sec 889.0 Acm/min 31394 Acf/min

Velocity 10.028 m/sec 32.90 f/sec

Gas Analysis 14.51 % O2 3.80 % CO2

29.188 Mol. Wt (g/gmole) Dry 25.609 Mol. Wt (g/gmole) Wet

* Standard Conditions: Metric: 20 deg C, 101.325 kPa

Imperial: 68 deg F, 29.92 in.Hg

Client:All RoadsDate:11-Sep-25Jobsite:Coquitlam, BCRun:1 - ParticulateSource:Baghouse StackRun Time:19:00 - 20:02

Control Unit (Y)	1.0323	Gas Anal	ysis (Vol. %	a):	Condensate Collection:	
Nozzle Diameter (in.)	0.3338		CO2	O2	Impinger 1 (grams)	240.0
Pitot Factor	0.8375	CEMS	3.80	14.51	Impinger 2 (grams)	160.0
Baro. Press. (in. Hg)	29.95				Impinger 3 (grams)	5.0
Static Press. (in. H2O)	-0.15				Impinger 4 (grams)	14.5
Stack Height (ft)	40					
Stack Diameter (in.)	54.0	Average	e = 3.80	14.51		
Stack Area (sq.ft.)	15.904				Total Gain (grams)	419.5
Minutes Per Reading	2.5					
Minutes Per Point	2.5					

Port Length (inches) 3.5 Collection:

Filter (grams) 0.00005 Washings (grams) 0.00050

Total (grams) <u>0.00055</u>

						Dry Ga	Dry Gas Temperature		Wall	
Traverse	Point	Time	Dry Gas Meter	Pitot ^P	Orifice ^H	Inlet	Outlet	Stack	Dist.	Isokin.
		(min.)	(ft3)	(in. H2O)	(in. H2O)	(oF)	(oF)	(oF)	(in.)	(%)
		0.0	225.255							
[1	2.5	226.970	0.250	1.65	77	77	192	1.1	105.5
	2	5.0	228.720	0.260	1.72	77	77	190	3.6	105.4
	3	7.5	230.470	0.260	1.73	77	77	188	6.4	105.3
	4	10.0	232.300	0.280	1.88	78	78	185	9.6	105.7
	5	12.5	234.120	0.280	1.87	78	78	186	13.5	105.2
	6	15.0	235.980	0.290	1.94	79	79	188	19.2	105.6
	7	17.5	237.810	0.280	1.87	81	81	194	34.8	105.8
	8	20.0	239.600	0.270	1.80	81	81	193	40.5	105.3
	9	22.5	241.400	0.270	1.80	82	82	193	44.4	105.7
	10	25.0	243.230	0.280	1.86	83	83	196	47.6	105.6
	11	27.5	245.030	0.270	1.79	84	84	198	50.4	105.7
	12	30.0	246.690	0.230	1.52	85	85	200	52.9	105.5
		0.0	246.690							
	1	2.5	248.350	0.230	1.53	84	84	195	1.1	105.3
	2	5.0	249.980	0.220	1.47	84	84	192	3.6	105.5
	3	7.5	251.570	0.210	1.41	83	83	190	6.4	105.3
	4	10.0	253.200	0.220	1.48	83	83	187	9.6	105.3
	5	12.5	254.830	0.220	1.49	83	83	185	13.5	105.1
	6	15.0	256.500	0.230	1.56	84	84	185	19.2	105.2
	7	17.5	258.210	0.240	1.63	84	84	184	34.8	105.4
	8	20.0	259.920	0.240	1.63	84	84	185	40.5	105.4
	9	22.5	261.660	0.250	1.69	84	84	185	44.4	105.1
	10	25.0	263.410	0.250	1.70	85	85	185	47.6	105.5
	11	27.5	265.190	0.260	1.76	85	85	185	50.4	105.3
	12	30.0	266.790	0.210	1.43	85	85	183	52.9	105.1
			Average:	0.250	1.675	82.1	82.1	189.3		105.4

Client:All RoadsDate:11-Sep-25Jobsite:Coquitlam, BCRun:2 - ParticulateSource:Baghouse StackRun Time:20:15 - 21:17

Particulate Concentration: 0.6 mg/dscm 0.0003 gr/dscf

 $0.4~mg/Acm \\ 0.0002~gr/Acf$

0.5 mg/dscm (@ 16% O2) 0.0002 gr/dscf (@ 16% O2)

Emission Rate: 0.02 kg/hr 0.045 lb/hr

Sample Gas Volume: 1.2219 dscm 43.150 dscf

Total Sample Time: 60.0 minutes

Average Isokineticity: 97.0 %

Flue Gas Characteristics

Moisture: 22.29 %

Temperature 85.0 oC 184.9 oF

 Flow
 549.3 dscm/min
 19400 dscf/min

 9.16 dscm/sec
 323.3 dscf/sec

863.0 Acm/min 30478 Acf/min

Velocity 9.735 m/sec 31.94 f/sec

Gas Analysis 14.75 % O2 3.66 % CO2

29.175 Mol. Wt (g/gmole) Dry 26.684 Mol. Wt (g/gmole) Wet

* **Standard Conditions:** Metric: 20 deg C, 101.325 kPa

Imperial: 68 deg F, 29.92 in.Hg

Client:All RoadsDate:11-Sep-25Jobsite:Coquitlam, BCRun:2 - ParticulateSource:Baghouse StackRun Time:20:15 - 21:17

Control Unit (Y)	1.0323	Gas Anal	ysis (Vol. %	(a) :	Condensate Collection:	:
Nozzle Diameter (in.)	0.3338		CO2	O2	Impinger 1 (grams)	205.0
Pitot Factor	0.8375	CEMS	3.66	14.75	Impinger 2 (grams)	40.0
Baro. Press. (in. Hg)	29.95				Impinger 3 (grams)	5.0
Static Press. (in. H2O)	-0.15				Impinger 4 (grams)	13.0
Stack Height (ft)	40					
Stack Diameter (in.)	54.0	Average	e = 3.66	<u>14.75</u>		
Stack Area (sq.ft.)	15.904				Total Gain (grams)	263.0
Minutes Per Reading	2.5					
Minutes Per Point	2.5					

Port Length (inches) 3.5 Collection:

Filter (grams) 0.00005 Washings (grams) 0.00070

Total (grams) <u>0.00075</u>

Traverse Point Time Dry Gas Meter Pitot ^P Orifice ^H Inl	Dry Gas Ter	Dry Gas Temperature	. Wal	Wall	
(min.) (R3) (in. H2O) (in. H2O) (oF 0.0 267.134			Stack Dist	t. Isokin.	
1 2.5 268.850 0.230 1.65 80 2 5.0 270.530 0.220 1.58 80 3 7.5 272.130 0.200 1.43 80 4 10.0 273.810 0.220 1.58 81 5 12.5 275.490 0.220 1.58 81 6 15.0 277.210 0.230 1.65 81 7 17.5 278.970 0.240 1.72 82 8 20.0 280.730 0.240 1.72 82 9 22.5 282.530 0.250 1.80 83 10 25.0 284.320 0.250 1.79 83 11 27.5 286.150 0.260 1.86 83 12 30.0 287.750 0.200 1.43 83 2 1 2.5 289.540 0.250 1.79 83 2 5 0 291.370 0.260 1.86 83 3 7.5 293.200	(oF) (oF)	oF) (oF) ((oF) (in.)	(%)	
2 5.0 270.530 0.220 1.58 80 3 7.5 272.130 0.200 1.43 80 4 10.0 273.810 0.220 1.58 81 5 12.5 275.490 0.220 1.58 81 6 15.0 277.210 0.230 1.65 81 7 17.5 278.970 0.240 1.72 82 8 20.0 280.730 0.240 1.72 82 9 22.5 282.530 0.250 1.80 83 10 25.0 284.320 0.250 1.79 83 11 27.5 286.150 0.260 1.86 83 12 30.0 287.750 0.200 1.43 83 2 1 2.5 289.540 0.250 1.79 83 2 5.0 291.370 0.260 1.86 83 3 7.5 293.200 0.260 1.86 83 4 10.0 295.100 0.280 <td></td> <td></td> <td></td> <td></td>					
3 7.5 272.130 0.200 1.43 80 4 10.0 273.810 0.220 1.58 81 5 12.5 275.490 0.220 1.58 81 6 15.0 277.210 0.230 1.65 81 7 17.5 278.970 0.240 1.72 82 8 20.0 280.730 0.240 1.72 82 9 22.5 282.530 0.250 1.80 83 10 25.0 284.320 0.250 1.79 83 11 27.5 286.150 0.260 1.86 83 12 30.0 287.750 0.200 1.43 83 2 1 2.5 289.540 0.250 1.79 83 2 5.0 291.370 0.260 1.86 83 3 7.5 293.200 0.260 1.86 83 4 10.0 295.100 0.280 2.01 84 5 12.5 297.030 0.290 </td <td>80 80</td> <td>30 80 1</td> <td>182 1.1</td> <td>97.0</td>	80 80	30 80 1	182 1.1	97.0	
4 10.0 273.810 0.220 1.58 81 5 12.5 275.490 0.220 1.58 81 6 15.0 277.210 0.230 1.65 81 7 17.5 278.970 0.240 1.72 82 8 20.0 280.730 0.240 1.72 82 9 22.5 282.530 0.250 1.80 83 10 25.0 284.320 0.250 1.79 83 11 27.5 286.150 0.260 1.86 83 12 30.0 287.750 0.200 1.43 83 1 2.5 289.540 0.250 1.79 83 2 5.0 291.370 0.260 1.86 83 3 7.5 293.200 0.260 1.86 83 4 10.0 295.100 0.280 2.01 84 5 12.5 297.030 0.290 2.08 84 6 15.0 298.930 0.280 2.	80 80	30 80 1	182 3.6	97.1	
5 12.5 275.490 0.220 1.58 81 6 15.0 277.210 0.230 1.65 81 7 17.5 278.970 0.240 1.72 82 8 20.0 280.730 0.240 1.72 82 9 22.5 282.530 0.250 1.80 83 10 25.0 284.320 0.250 1.79 83 11 27.5 286.150 0.260 1.86 83 12 30.0 287.750 0.200 1.43 83 0.0 287.750 0.200 1.43 83 2 5.0 291.370 0.260 1.86 83 3 7.5 293.200 0.260 1.86 83 3 7.5 293.200 0.260 1.86 83 4 10.0 295.100 0.280 2.01 84 5 12.5 297.030 0.290 2.08 84 6 15.0 298.930 0.280 2.01	80 80	30 80 1	183 6.4	97.1	
6 15.0 277.210 0.230 1.65 81 7 17.5 278.970 0.240 1.72 82 8 20.0 280.730 0.240 1.72 82 9 22.5 282.530 0.250 1.80 83 10 25.0 284.320 0.250 1.79 83 11 27.5 286.150 0.260 1.86 83 12 30.0 287.750 0.200 1.43 83 0.0 287.750 0.200 1.43 83 1 2.5 289.540 0.250 1.79 83 2 5.0 291.370 0.260 1.86 83 3 7.5 293.200 0.260 1.86 83 4 10.0 295.100 0.280 2.01 84 5 12.5 297.030 0.290 2.08 84 6 15.0 298.930 0.280 2.01 84 7 17.5 300.790 0.270 1.93	81 81	1 81 1	183 9.6	97.0	
7 17.5 278.970 0.240 1.72 82 8 20.0 280.730 0.240 1.72 82 9 22.5 282.530 0.250 1.80 83 10 25.0 284.320 0.250 1.79 83 11 27.5 286.150 0.260 1.86 83 12 30.0 287.750 0.200 1.43 83 0.0 287.750 0.200 1.43 83 1 2.5 289.540 0.250 1.79 83 2 5.0 291.370 0.260 1.86 83 3 7.5 293.200 0.260 1.86 83 4 10.0 295.100 0.280 2.01 84 5 12.5 297.030 0.290 2.08 84 6 15.0 298.930 0.280 2.01 84 7 17.5 300.790 0.270 1.93 83 8 20.0 302.650 0.274 1.93	81 81	31 81 1	183 13.5	97.0	
8 20.0 280.730 0.240 1.72 82 9 22.5 282.530 0.250 1.80 83 10 25.0 284.320 0.250 1.79 83 11 27.5 286.150 0.260 1.86 83 12 30.0 287.750 0.200 1.43 83 0.0 287.750 0.200 1.79 83 2 5.0 291.370 0.260 1.86 83 3 7.5 293.200 0.260 1.86 83 4 10.0 295.100 0.280 2.01 84 5 12.5 297.030 0.290 2.08 84 6 15.0 298.930 0.280 2.01 84 7 17.5 300.790 0.270 1.93 83 8 20.0 302.650 0.274 1.93 83 9 22.5 304.550 0.280 2.01 84 10 25.0 306.380 0.260 1.86 <t< td=""><td>81 81</td><td>1 81 1</td><td>184 19.2</td><td>97.2</td></t<>	81 81	1 81 1	184 19.2	97.2	
9 22.5 282.530 0.250 1.80 83 10 25.0 284.320 0.250 1.79 83 11 27.5 286.150 0.260 1.86 83 12 30.0 287.750 0.200 1.43 83 0.0 287.750 0.200 1.79 83 2 5.0 291.370 0.260 1.86 83 3 7.5 293.200 0.260 1.86 83 4 10.0 295.100 0.280 2.01 84 5 12.5 297.030 0.290 2.08 84 6 15.0 298.930 0.280 2.01 84 7 17.5 300.790 0.270 1.93 83 8 20.0 302.650 0.274 1.93 83 9 22.5 304.550 0.280 2.01 84 10 25.0 306.380 0.260 1.86 84 11 27.5 308.180 0.250 1.79 <	82 82	32 82 1	184 34.8	97.3	
10 25.0 284.320 0.250 1.79 83 11 27.5 286.150 0.260 1.86 83 12 30.0 287.750 0.200 1.43 83 0.0 287.750 <t< td=""><td>82 82</td><td>32 82 1</td><td>184 40.5</td><td>97.3</td></t<>	82 82	32 82 1	184 40.5	97.3	
11 27.5 286.150 0.260 1.86 83 12 30.0 287.750 0.200 1.43 83 0.0 287.750 <	83 83	3 83 1	184 44.4	97.3	
12 30.0 287.750 0.200 1.43 83 0.0 287.750	83 83	3 83 1	185 47.6	96.8	
0.0 287.750 1 2.5 289.540 0.250 1.79 83 2 5.0 291.370 0.260 1.86 83 3 7.5 293.200 0.260 1.86 83 4 10.0 295.100 0.280 2.01 84 5 12.5 297.030 0.290 2.08 84 6 15.0 298.930 0.280 2.01 84 7 17.5 300.790 0.270 1.93 83 8 20.0 302.650 0.274 1.93 83 9 22.5 304.550 0.280 2.01 84 10 25.0 306.380 0.260 1.86 84 11 27.5 308.180 0.250 1.79 84	83 83	3 83 1	185 50.4	97.1	
1 2.5 289.540 0.250 1.79 83 2 5.0 291.370 0.260 1.86 83 3 7.5 293.200 0.260 1.86 83 4 10.0 295.100 0.280 2.01 84 5 12.5 297.030 0.290 2.08 84 6 15.0 298.930 0.280 2.01 84 7 17.5 300.790 0.270 1.93 83 8 20.0 302.650 0.274 1.93 83 9 22.5 304.550 0.280 2.01 84 10 25.0 306.380 0.260 1.86 84 11 27.5 308.180 0.250 1.79 84	83 83	3 83 1	185 52.9	96.7	
1 2.5 289.540 0.250 1.79 83 2 5.0 291.370 0.260 1.86 83 3 7.5 293.200 0.260 1.86 83 4 10.0 295.100 0.280 2.01 84 5 12.5 297.030 0.290 2.08 84 6 15.0 298.930 0.280 2.01 84 7 17.5 300.790 0.270 1.93 83 8 20.0 302.650 0.274 1.93 83 9 22.5 304.550 0.280 2.01 84 10 25.0 306.380 0.260 1.86 84 11 27.5 308.180 0.250 1.79 84					
2 5.0 291.370 0.260 1.86 83 3 7.5 293.200 0.260 1.86 83 4 10.0 295.100 0.280 2.01 84 5 12.5 297.030 0.290 2.08 84 6 15.0 298.930 0.280 2.01 84 7 17.5 300.790 0.270 1.93 83 8 20.0 302.650 0.274 1.93 83 9 22.5 304.550 0.280 2.01 84 10 25.0 306.380 0.260 1.86 84 11 27.5 308.180 0.250 1.79 84					
3 7.5 293.200 0.260 1.86 83 4 10.0 295.100 0.280 2.01 84 5 12.5 297.030 0.290 2.08 84 6 15.0 298.930 0.280 2.01 84 7 17.5 300.790 0.270 1.93 83 8 20.0 302.650 0.274 1.93 83 9 22.5 304.550 0.280 2.01 84 10 25.0 306.380 0.260 1.86 84 11 27.5 308.180 0.250 1.79 84	83 83	3 83 1	185 1.1	96.8	
4 10.0 295.100 0.280 2.01 84 5 12.5 297.030 0.290 2.08 84 6 15.0 298.930 0.280 2.01 84 7 17.5 300.790 0.270 1.93 83 8 20.0 302.650 0.274 1.93 83 9 22.5 304.550 0.280 2.01 84 10 25.0 306.380 0.260 1.86 84 11 27.5 308.180 0.250 1.79 84	83 83	3 83 1	185 3.6	97.1	
5 12.5 297.030 0.290 2.08 84 6 15.0 298.930 0.280 2.01 84 7 17.5 300.790 0.270 1.93 83 8 20.0 302.650 0.274 1.93 83 9 22.5 304.550 0.280 2.01 84 10 25.0 306.380 0.260 1.86 84 11 27.5 308.180 0.250 1.79 84	83 83	3 83 1	186 6.4	97.2	
6 15.0 298.930 0.280 2.01 84 7 17.5 300.790 0.270 1.93 83 8 20.0 302.650 0.274 1.93 83 9 22.5 304.550 0.280 2.01 84 10 25.0 306.380 0.260 1.86 84 11 27.5 308.180 0.250 1.79 84	84 84	34 84 1	186 9.6	97.1	
7 17.5 300.790 0.270 1.93 83 8 20.0 302.650 0.274 1.93 83 9 22.5 304.550 0.280 2.01 84 10 25.0 306.380 0.260 1.86 84 11 27.5 308.180 0.250 1.79 84	84 84	34 84 1	186 13.5	96.9	
8 20.0 302.650 0.274 1.93 83 9 22.5 304.550 0.280 2.01 84 10 25.0 306.380 0.260 1.86 84 11 27.5 308.180 0.250 1.79 84	84 84	34 84 1	186 19.2	97.1	
9 22.5 304.550 0.280 2.01 84 10 25.0 306.380 0.260 1.86 84 11 27.5 308.180 0.250 1.79 84	83 83	3 83 1	187 34.8	97.0	
10 25.0 306.380 0.260 1.86 84 11 27.5 308.180 0.250 1.79 84	83 83	3 83 1	187 40.5	96.3	
11 27.5 308.180 0.250 1.79 84	84 84	34 84 1	187 44.4	97.1	
	84 84	34 84 1	187 47.6	97.1	
12 30.0 309.860 0.220 1.58 84	84 84	34 84 1	186 50.4	97.3	
	84 84	4 84 1	186 52.9	96.7	
Average: 0.247 1.771 82	82.6 82.	82.6 82.6	184.9	97.0	

Client:All RoadsDate:11-Sep-25Jobsite:Coquitlam, BCRun:3 - ParticulateSource:Baghouse StackRun Time:21:36 - 22:38

Particulate Concentration: 0.4 mg/dscm 0.0002 gr/dscf

 $0.2~mg/Acm \\ 0.0001~gr/Acf$

0.3 mg/dscm (@ 16% O2) 0.0001 gr/dscf (@ 16% O2)

Emission Rate: 0.01 kg/hr 0.027 lb/hr

Sample Gas Volume: 1.2203 dscm 43.096 dscf

Total Sample Time: 60.0 minutes

Average Isokineticity: 97.3 %

Flue Gas Characteristics

Moisture: 22.58 %

Temperature 87.1 oC 188.7 oF

Flow 546.7 dscm/min 19307 dscf/min

9.11 dscm/sec 321.8 dscf/sec 867.1 Acm/min 30622 Acf/min

Velocity 9.781 m/sec 32.09 f/sec

Gas Analysis 14.41 % O2 3.83 % CO2

29.189 Mol. Wt (g/gmole) Dry 26.663 Mol. Wt (g/gmole) Wet

* Standard Conditions: Metric: 20 deg C, 101.325 kPa

Imperial: 68 deg F, 29.92 in.Hg

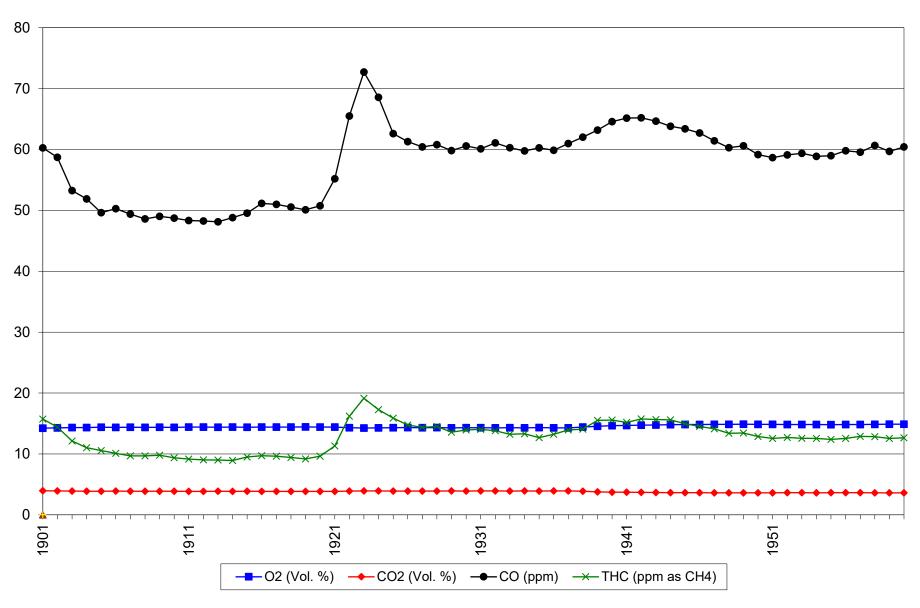
Client:All RoadsDate:11-Sep-25Jobsite:Coquitlam, BCRun:3 - ParticulateSource:Baghouse StackRun Time:21:36 - 22:38

Control Unit (Y)	1.0323	Gas Anal	ysis (Vol. %	5):	Condensate Collection:	
Nozzle Diameter (in.)	0.3338		CO2	O2	Impinger 1 (grams)	205.0
Pitot Factor	0.8375	CEMS	3.83	14.41	Impinger 2 (grams)	45.0
Baro. Press. (in. Hg)	29.95				Impinger 3 (grams)	5.0
Static Press. (in. H2O)	-0.15				Impinger 4 (grams)	12.0
Stack Height (ft)	40					
Stack Diameter (in.)	54.0	Average	e = 3.83	<u>14.41</u>	<u> </u>	
Stack Area (sq.ft.)	15.904				Total Gain (grams)	267.0
Minutes Per Reading	2.5					
Minutes Per Point	2.5					

Port Length (inches) 3.5 Collection:

Filter (grams) 0.00005 Washings (grams) 0.00040

Total (grams) <u>0.00045</u>

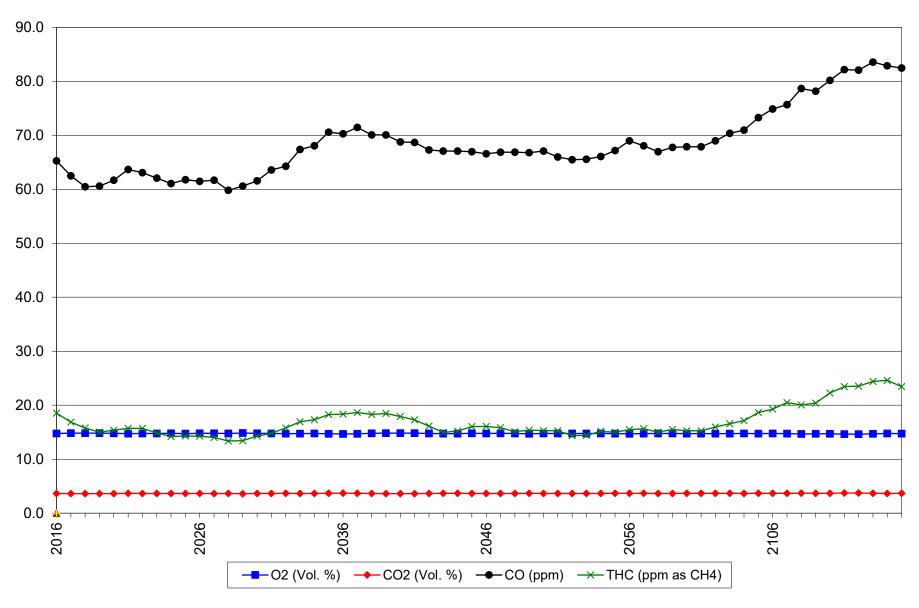

			Dry Gas Meter	Pitot ^P	Orifice ^H	Dry Gas Temperature		ire	Wall	Wall
Traverse	Point	Time				Inlet	Outlet	Stack	Dist.	Isokin.
		(min.)	(ft3)		(in. H2O)	(oF)	(oF)	(oF)		
		0.0	310.255							
	1	2.5	311.960	0.230	1.63	81	81	190	1.1	97.2
	2	5.0	313.630	0.220	1.56	81	81	190	3.6	97.3
	3	7.5	315.220	0.200	1.42	81	81	190	6.4	97.1
	4	10.0	316.890	0.220	1.55	80	80	191	9.6	97.5
	5	12.5	318.590	0.230	1.63	80	80	191	13.5	97.1
	6	15.0	320.330	0.240	1.70	80	80	191	19.2	97.3
	7	17.5	322.080	0.240	1.71	82	82	189	34.8	97.4
	8	20.0	323.870	0.250	1.78	82	82	189	40.5	97.6
	9	22.5	325.660	0.250	1.78	82	82	189	44.4	97.6
	10	25.0	327.480	0.260	1.85	83	83	189	47.6	97.2
	11	27.5	329.270	0.250	1.78	83	83	188	50.4	97.4
	12	30.0	330.870	0.200	1.43	84	84	188	52.9	97.0
		0.0	330.870							
	1	2.5	332.660	0.250	1.79	84	84	188	1.1	97.2
	2	5.0	334.490	0.260	1.86	84	84	188	3.6	97.4
	3	7.5	336.320	0.260	1.86	85	85	188	6.4	97.3
	4	10.0	338.190	0.270	1.93	85	85	188	9.6	97.6
	5	12.5	340.130	0.290	2.09	86	86	187	13.5	97.4
	6	15.0	342.040	0.280	2.01	86	86	187	19.2	97.6
	7	17.5	343.910	0.270	1.94	86	86	187	34.8	97.3
	8	20.0	345.780	0.270	1.94	85	85	187	40.5	97.5
	9	22.5	347.680	0.280	2.01	86	86	188	44.4	97.2
	10	25.0	349.520	0.260	1.87	87	87	188	47.6	97.4
	11	27.5	351.320	0.250	1.80	87	87	189	50.4	97.3
	12	30.0	353.010	0.220	1.58	87	87	189	52.9	97.3
			A	0.240	1 771	02.6	02.6	100.7		07.2
			Average:	0.248	1.771	83.6	83.6	188.7		97.3

A. Lanfranco and Associates Inc. METLab CEM Report

Client:	All Roads - Coquitlam	, BC			Moisture % =
Source:	Baghouse		O2 Correction	16	31.99
Run:	1	02	Year: CO₂	2025 CO	тнс
Date	Time	(Vol. %)	(Vol. %)	(ppm)	(ppm as CH ₄)
11-Sep 11-Sep	1901 1902	14.23 14.28	3.94 3.92	60.26 58.71	15.71 14.41
11-Sep	1902	14.20	3.90	53.26	12.12
11-Sep	1904	14.33	3.88	51.87	11.02
11-Sep	1905	14.39	3.87	49.61	10.54
11-Sep 11-Sep	1906 1907	14.35 14.38	3.89 3.87	50.27 49.39	10.10 9.69
11-Sep	1908	14.35	3.88	48.59	9.67
11-Sep	1909	14.39	3.87	49.02	9.79
11-Sep	1910	14.37	3.87	48.72	9.38
11-Sep 11-Sep	1911 1912	14.40 14.42	3.85 3.84	48.33 48.26	9.14 9.03
11-Sep	1913	14.42	3.86	48.12	9.01
11-Sep	1914	14.42	3.84	48.81	8.92
11-Sep	1915	14.39	3.87	49.54	9.50
11-Sep 11-Sep	1916 1917	14.41 14.41	3.85 3.85	51.15 50.99	9.69 9.61
11-Sep	1918	14.41	3.85	50.54	9.41
11-Sep	1919	14.43	3.84	50.09	9.18
11-Sep	1920	14.40	3.86	50.74	9.61
11-Sep	1921	14.42	3.85	55.18	11.30
11-Sep 11-Sep	1922 1923	14.30 14.26	3.91 3.93	65.49 72.71	16.19 19.15
11-Sep	1924	14.28	3.92	68.55	17.28
11-Sep	1925	14.29	3.91	62.61	15.88
11-Sep	1926	14.32	3.90	61.28	14.76
11-Sep 11-Sep	1927 1928	14.29 14.32	3.91 3.89	60.41 60.79	14.35 14.51
11-Sep	1929	14.27	3.92	59.81	13.55
11-Sep	1930	14.30	3.91	60.57	13.93
11-Sep	1931	14.29	3.91	60.09	14.04
11-Sep 11-Sep	1932 1933	14.28 14.31	3.92 3.90	61.07 60.29	13.80 13.23
11-Sep	1934	14.28	3.92	59.77	13.30
11-Sep	1935	14.32	3.90	60.26	12.67
11-Sep	1936	14.28	3.92	59.86	13.23
11-Sep	1937 1938	14.28 14.41	3.92 3.86	60.96 62.02	13.94
11-Sep 11-Sep	1939	14.41	3.78	63.18	14.07 15.52
11-Sep	1940	14.64	3.73	64.57	15.57
11-Sep	1941	14.67	3.71	65.16	15.18
11-Sep	1942	14.73	3.68	65.19	15.76
11-Sep 11-Sep	1943 1944	14.75 14.79	3.67 3.65	64.66 63.80	15.65 15.59
11-Sep	1945	14.82	3.62	63.40	14.97
11-Sep	1946	14.82	3.63	62.72	14.51
11-Sep	1947	14.85	3.61	61.41	14.11
11-Sep 11-Sep	1948 1949	14.85 14.87	3.61 3.60	60.29 60.61	13.40 13.44
11-Sep	1950	14.84	3.62	59.14	12.86
11-Sep	1951	14.84	3.62	58.65	12.54
11-Sep	1952	14.83	3.63	59.09	12.70
11-Sep 11-Sep	1953 1954	14.82 14.83	3.63 3.62	59.36 58.86	12.56 12.54
11-Sep	1955	14.81	3.64	58.97	12.38
11-Sep	1956	14.82	3.63	59.80	12.55
11-Sep	1957	14.83	3.62	59.54	12.88
11-Sep	1958	14.84	3.61	60.65	12.84
11-Sep 11-Sep	1959 2000	14.88 14.87	3.60 3.60	59.69 60.42	12.54 12.65
σορ	2000		0.00	00.12	.2.00
-	Average	14.51	3.80	58.0	12.8
	Minimum Maximum	14.23	3.60	48.1	8.9
	Waxiiiuiii	14.88	3.94	72.7	19.1
Mass Cor	centration (mg/m3 dry)	n/a	n/a	<u>67.5</u>	<u>12.6</u>
Mass Concentration	n (mg/m3 dry) Corrected to 16%	<u>6 O2</u>		<u>51.8</u>	9.6
	Range	25.0	20.00	500.0	100.0
Calibration St	_	02	CO2	CO	THC
Gas (Cert. Valu		11.05	10.91	243.5	45.1
Analyzer Initial S		10.90	11.04	245.7	44.99
Analyzer Initial 2	reio	0.00	0.08	2.49	0.04
Initial Gas Resp	onse	10.89	11.04	247.2	45.0
Final Gas Resp		10.87	11.04	252.8	42.0
Initial Zero Resp	oonse	0.03	0.08	1.8	0.04
Final Zero Resp	onse	0.00	0.10	6.0	0.75
Error Summa	rv				
	rr (+/- 2% or 5% THC)	-0.6%	0.6%	0.4%	-0.1%
	Err (+/- 2% or 5% THC)	0.0%	0.4%	0.5%	0.0%
Initial Span Sys		0.0%	0.0%	0.3%	0.0%
Final Span Syst		-0.1%	0.0%	1.4%	-3.0%
Initial Zero Syste Final Zero Syste		0.1% 0.0%	0.0% 0.1%	-0.1% 0.7%	0.0% 0.7%
Test Span Drift	(+/- 3%)	-0.1%	0.0%	1.1%	-3.0%
Test Zero Drift	(+/- 3%)	-0.1%	0.1%	0.8%	0.7%

Baghouse Stack - Run 1 (September 11, 2025)

All Roads - Coquitlam, BC METLab CEM Results

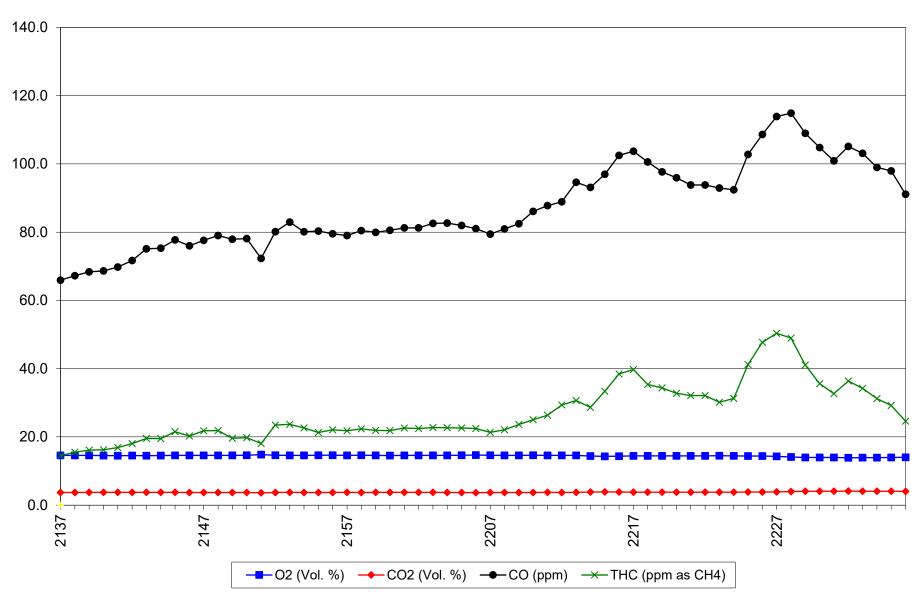

A. Lanfranco and Associates Inc.

A. Lanfranco and Associates Inc. METLab CEM Report

Client:	All Roads - Coquitle	am, BC			Moisture % =
Source:	Baghouse		O2 Correction	16	22.29
Run:	2	0,	Year: CO ₂	2025 CO	THC
Date	Time	(Vol. %)	(Vol. %)	(ppm)	(ppm as CH ₄)
11-Sep 11-Sep	2016	14.77 14.83	3.64	65.27	18.52
11-Sep 11-Sep	2017 2018	14.83	3.61 3.60	62.47 60.47	16.86 15.77
11-Sep	2019	14.83	3.61	60.57	15.00
11-Sep 11-Sep	2020 2021	14.79 14.72	3.63 3.67	61.67 63.67	15.38 15.71
11-Sep	2022	14.75	3.65	63.07	15.72
11-Sep	2023 2024	14.75 14.78	3.65	62.07	14.85 14.21
11-Sep 11-Sep	2025	14.76	3.64 3.65	61.07 61.77	14.30
11-Sep	2026	14.78	3.63	61.47	14.25
11-Sep 11-Sep	2027 2028	14.78 14.77	3.63 3.65	61.67 59.80	14.01 13.37
11-Sep	2029	14.84	3.60	60.57	13.42
11-Sep 11-Sep	2030 2031	14.78 14.77	3.64 3.63	61.57	14.28
11-Sep	2032	14.77	3.67	63.57 64.27	14.79 15.80
11-Sep	2033	14.74	3.66	67.37	16.92
11-Sep 11-Sep	2034 2035	14.75 14.69	3.65 3.67	68.07 70.57	17.31 18.25
11-Sep	2036	14.68	3.69	70.27	18.35
11-Sep	2037	14.70	3.68	71.47	18.64
11-Sep 11-Sep	2038 2039	14.78 14.82	3.64 3.62	70.07 70.07	18.30 18.48
11-Sep	2040	14.82	3.61	68.77	17.90
11-Sep	2041	14.82	3.62	68.67	17.29
11-Sep 11-Sep	2042 2043	14.77 14.72	3.64 3.67	67.27 67.07	16.13 14.97
11-Sep	2044	14.74	3.66	67.07	15.20
11-Sep 11-Sep	2045 2046	14.78 14.77	3.63 3.64	66.97 66.57	16.02 16.06
11-Sep	2047	14.77	3.63	66.87	15.84
11-Sep	2048	14.75	3.65	66.87	15.10
11-Sep 11-Sep	2049 2050	14.70 14.75	3.68 3.65	66.77 67.07	15.39 15.31
11-Sep	2051	14.77	3.64	65.97	15.26
11-Sep	2052	14.77	3.65	65.47	14.38
11-Sep 11-Sep	2053 2054	14.77 14.76	3.64 3.65	65.57 66.07	14.39 15.14
11-Sep	2055	14.74	3.67	67.17	15.01
11-Sep	2056	14.70	3.69	68.97	15.46
11-Sep 11-Sep	2057 2058	14.73 14.75	3.67 3.65	68.07 66.97	15.66 14.99
11-Sep	2059	14.75	3.65	67.77	15.49
11-Sep 11-Sep	2100 2101	14.72 14.72	3.67 3.68	67.87 67.87	15.26 15.27
11-Sep	2102	14.73	3.67	68.97	15.96
11-Sep	2103	14.73	3.67	70.37	16.57
11-Sep 11-Sep	2104 2105	14.76 14.72	3.66 3.68	70.97 73.27	17.14 18.64
11-Sep	2106	14.75	3.66	74.87	19.27
11-Sep 11-Sep	2107 2108	14.72 14.67	3.67 3.71	75.67 78.67	20.47 20.02
11-Sep 11-Sep	2109	14.69	3.69	78.17	20.40
11-Sep	2110	14.71	3.68	80.17	22.26
11-Sep 11-Sep	2111 2112	14.64 14.63	3.72 3.73	82.16 82.06	23.43 23.54
11-Sep	2113	14.70	3.69	83.56	24.40
11-Sep	2114	14.76	3.65	82.86	24.61
11-Sep	2115	14.73	3.67	82.46	23.46
	Average	14.75	3.66	68.4	16.9
	Minimum Maximum	14.63 14.84	3.60 3.73	59.8 83.6	13.4 24.6
Mass Con	ncentration (mg/m3 dry)	n/a	n/a	<u>79.7</u>	14.5
Mass Concentra	ation (mg/m3 dry) Corrected to	16% O2		<u>63.5</u>	<u>11.6</u>
	Range	25.0	20.00	500.0	100.0
Calibration		O2	CO2	CO	THC
Gas (Cert. Va		11.05	10.91	243.5	45.1
Analyzer Initia Analyzer Initia		10.90 0.00	11.04 0.08	245.7 2.49	44.99 0.04
Initial Gas Res	sponse	10.87	11.04	252.8	42.0
Final Gas Res		10.88	11.10	254.2	41.7
Initial Zero Re		0.00	0.10	6.0 13.8	0.75
Final Zero Res	apolia c	-0.01	0.10	13.8	0.98
Error Summ		0.00/	0.001	0.401	0.40/
	Errc (+/- 2% or 5% TH) Err (+/- 2% or 5% TH)	-0.6% 0.0%	0.6% 0.4%	0.4% 0.5%	-0.1% 0.0%
Initial Span Sy	/ster (+/- 5%)	-0.1%	0.0%	1.4%	-3.0%
Final Span Sy Initial Zero Sys		-0.1% 0.0%	0.3% 0.1%	1.7% 0.7%	-3.3% 0.7%
Final Zero Sys		0.0%	0.1%	2.3%	0.7%
Test Span Dri		0.0%	0.3%	0.3%	-0.3%

Baghouse Stack - Run 2 (September 11, 2025)

All Roads - Coquitlam, BC
METLab CEM Results


A. Lanfranco and Associates Inc.

A. Lanfranco and Associates Inc. METLab CEM Report

Client:	All Roads - Coquit	tlam, BC			Moisture % =
Source:	Baghouse	,	O2 Correction	16	22.58
Run:	3	0,	Year: CO ₂	2025 CO	THC
Date	Time	(Vol. %)	(Vol. %)	(ppm)	(ppm as CH ₄)
11-Sep	2137 2138	14.58 14.58	3.73 3.73	65.93 67.23	14.52
11-Sep 11-Sep	2139	14.57	3.74	68.34	15.54 16.12
11-Sep	2140	14.53	3.76	68.64	16.22
11-Sep 11-Sep	2141 2142	14.51 14.54	3.77 3.75	69.75 71.67	16.87 18.06
11-Sep	2143	14.51	3.77	75.09	19.57
11-Sep 11-Sep	2144 2145	14.54 14.57	3.75 3.73	75.29 77.71	19.53 21.52
11-Sep	2146	14.58	3.73	76.00	20.28
11-Sep	2147	14.59	3.72	77.61	21.78
11-Sep 11-Sep	2148 2149	14.58 14.59	3.72 3.72	79.02 77.91	21.83 19.62
11-Sep	2150	14.64	3.70	78.11	19.78
11-Sep 11-Sep	2151 2152	14.81 14.65	3.61	72.27	18.08
11-Sep	2153	14.58	3.69 3.73	80.12 82.94	23.51 23.67
11-Sep	2154	14.59	3.72	80.12	22.65
11-Sep 11-Sep	2155 2156	14.61 14.61	3.71 3.71	80.33 79.52	21.31 22.10
11-Sep	2157	14.57	3.74	79.02	21.78
11-Sep	2158	14.62	3.71	80.43	22.35
11-Sep 11-Sep	2159 2200	14.58 14.55	3.74 3.74	79.92 80.53	21.88 21.86
11-Sep	2201	14.56	3.75	81.23	22.59
11-Sep 11-Sep	2202	14.57	3.74	81.23	22.48 22.74
11-Sep	2203 2204	14.57 14.58	3.74 3.73	82.54 82.64	22.74
11-Sep	2205	14.61	3.71	81.94	22.58
11-Sep 11-Sep	2206 2207	14.68 14.65	3.69 3.70	81.03 79.42	22.44 21.35
11-Sep	2208	14.60	3.72	80.93	22.09
11-Sep	2209	14.58	3.73	82.44	23.61
11-Sep 11-Sep	2210 2211	14.62 14.57	3.71 3.74	86.07 87.78	25.06 26.35
11-Sep	2212	14.59	3.72	88.89	29.35
11-Sep	2213 2214	14.58 14.41	3.73 3.83	94.63	30.66
11-Sep 11-Sep	2214	14.31	3.88	93.12 96.94	28.66 33.39
11-Sep	2216	14.33	3.87	102.48	38.42
11-Sep 11-Sep	2217 2218	14.43 14.46	3.81 3.80	103.69 100.57	39.76 35.36
11-Sep	2219	14.44	3.81	97.65	34.36
11-Sep	2220	14.42	3.82	95.93	32.78
11-Sep 11-Sep	2221 2222	14.45 14.44	3.80 3.81	93.82 93.82	32.09 32.10
11-Sep	2223	14.48	3.78	92.91	30.16
11-Sep 11-Sep	2224 2225	14.45 14.40	3.80 3.83	92.41 102.78	31.27 41.21
11-Sep	2226	14.39	3.84	108.62	47.71
11-Sep	2227	14.31	3.89	113.86	50.37
11-Sep 11-Sep	2228 2229	14.14 13.96	3.99 4.08	114.87 108.93	48.96 41.06
11-Sep	2230	13.97	4.08	104.80	35.61
11-Sep 11-Sep	2231 2232	13.96 13.87	4.09 4.14	100.87 105.10	32.66 36.40
11-Sep	2232	13.94	4.09	103.10	34.21
11-Sep	2234	13.94	4.10	98.96	31.21
11-Sep 11-Sep	2235 2236	13.97 14.02	4.08 4.05	97.95 91.10	29.20 24.61
	Average Minimum	14.41 13.87	3.83 3.69	92.00 79.02	29.85 21.31
	Maximum	14.68		114.87	50.37
Mass Cond	centration (mg/m3 dry)	<u>n/a</u>	<u>n/a</u>	107.2	<u>25.7</u>
Mass Concentrat	ion (mg/m3 dry) Corrected t	to 16% O2		80.9	<u>19.4</u>
	Range	25.0	20.00	500.0	100.0
Calibration S		02		CO	THC
Gas (Cert. Val		11.05		243.5	45.1
Analyzer Initial Analyzer Initial	•	10.90 0.00		245.7 2.49	44.99 0.04
Initial Gas Res	oonse	10.88	11.10	254.2	41.7
Final Gas Resp	oonse	10.87	11.12	257.5	41.8
Initial Zero Res		-0.01 0.03	0.10 0.15	13.8 14.3	0.98
Final Zero Res	porise	0.03	0.15	14.3	0.96
Error Summa		2.22	0.001	0.401	2 424
	Errc (+/- 2% or 5% THI Erri (+/- 2% or 5% THI	-0.6% 0.0%	0.6% 0.4%	0.4% 0.5%	-0.1% 0.0%
Initial Span Sys	ster (+/- 5%)	-0.1%	0.3%	1.7%	-3.3%
Final Span Sys Initial Zero Syst		-0.1% 0.0%	0.4% 0.1%	2.4% 2.3%	-3.2% 0.9%
Final Zero Syst		0.0%	0.1%	2.4%	0.9%
Test Span Drift	(+/- 3%)	0.0%	0.1%	0.6%	0.1%

Baghouse Stack - Run 3 (September 11, 2025)

All Roads - Coquitlam, BC
METLab CEM Results

A. Lanfranco and Associates Inc.

APPENDIX 2 CALCULATIONS

The following sections show the equations and define the variables that were used for this survey. The equations are organized in four sections. Equations 1-11 were used to calculate particulate concentration at standard conditions on a dry basis and with an Oxygen correction. Equations 11-26 were used to sample within the $100 \pm 10\%$ isokinetic variation and to confirm that sampling meets this isokinetic variation threshold. Equations 26-28 were used to calculate the volumetric flowrate of the stack flue gas. Equations 29-36 were used to calculate the results from the CEM system.

A2.1

Contaminant Concentration Calculations
$$c = \frac{m}{V_{std}}$$
 Equation 1
$$m_{part} = m_{filter} + m_{pw} + m_{cond}$$
 Equation 2
$$m_i = m_{ana,i} - m_{blank}$$
 Equation 3
$$V_{std} = \frac{V_{std(imp)}}{35.315}$$
 Equation 4
$$V_{std(imp)} = \frac{V_{samp} \times y \times P_m \times (T_{std} + 459.67)}{P_{std} \times (T_{m(ave)} + 459.67)}$$
 Equation 5
$$V_{samp} = V_{final} - V_{init}$$
 Equation 6
$$P_m = P_B + \frac{\Delta H_{ave}}{13.6}$$
 Equation 7
$$\Delta H_{ave} = \frac{1}{n} \sum_{i=1}^{n} \Delta H_{i(act)}$$
, where $n =$ the number of points Equation 8
$$OC = \frac{20.9 - \% O_{2c}}{20.9 - \% O_{2m}}$$
 Equation 9

$$\%O_{2m} = \frac{1}{n}\sum_{i=1}^{n}\%O_{2i}$$
, where $n = the\ number\ of\ O_2\ measurements$ Equation 10

$$\%CO_{2m} = \frac{1}{n} \sum_{i=1}^{n} \%CO_{2i}$$
, where $n =$ the number of CO_{2} measurements Equation 11

Where,

c = Contaminant concentration

m = Contaminant mass

 m_i = Net analytical mass (mg, ng, or μ g) $m_{ana,i}$ = Analytical mass (mg, ng, or μ g) m_{blank} = Blank analytical mass (mg, ng, or μ g)

 m_{part} = Total particulate mass (mg)

 m_{filter} = Net particulate gain from filter (mg)

 m_{pw} = Net particulate gain from probe wash (mg)

 m_{cond} = Net condensable particulate from lab analysis (mg)

 $V_{std(imp)}$ = Sample volume at standard conditions (ft³) V_{std} = Sample volume at standard conditions (m³) V_{samp} = Sample volume at actual conditions (ft³)

 V_{final} = Final gas meter reading (ft³) V_{init} = Initial gas meter reading (ft³) T_{std} = Standard temperature (68 °F) T_m = Gas meter temperature (°F)

 $T_{m(ave)}$ = Average gas meter temperature (°F) P_m = Absolute meter pressure (inches of Hg) P_B = Barometric pressure (inches of Hg)

 ΔH_{ave} = Average of individual point orifice pressures (inches of H_2O) $\Delta H_{i(act)}$ = Individual recorded point orifice pressures (inches of H_2O)

OC = Oxygen correction factor (dimensionless)

 $\%O_{2c}$ = Oxygen concentration to correct to (% dry basis)

 $\%O_{2m}$ = Average measured stack gas oxygen concentration (% dry basis) $\%CO_{2m}$ = Average measured stack gas oxygen concentration (% dry basis)

Equation 1 is the general concentration calculation used for all contaminants. The contaminant mass, m, is the net analytic mass for the given contaminant. For particulate, m is the sum of the mass contributed from probe washing and filter particulate.

A2.2 Isokinetic Variation Calculations

$$\Delta H_{i} = \frac{2.62 \times 10^{7} \times c_{p} \times A_{n} \times (1-B_{wo}) \times M_{D} \times (T_{m}+459.67) \times \Delta p_{i}}{k_{o} \times M_{w} \times (T_{Stk}+459.67)} \qquad \text{Equation 11}$$

$$R_{m} = 85.49 \times c_{p} \times \sqrt{\Delta p_{i}} \times \sqrt{\frac{(T_{stk_{i}}+459.67)}{M_{w} \times P_{B}}} \times 60 \times A_{n} \times \frac{(T_{m_{i}}+459.67) \times (1-B_{wo})}{(T_{stk_{i}}+459.67) \times y} \qquad \text{Equation 12}$$

$$A_{n} = \pi \left(\frac{d_{n}}{24}\right)^{2} \qquad \qquad \text{Equation 13}$$

$$M_{w} = M_{D} \times (1-B_{wo}) + 18 \times B_{wo} \qquad \qquad \text{Equation 14}$$

$$M_{D} = 0.44 \times \% CO_{2} + 0.32 \times \% O_{2} + 0.28 \times (100 - \% CO_{2} - \% O_{2}) \qquad \qquad \text{Equation 15}$$

$$T_{Stk} = \frac{1}{n} \sum_{i=1}^{n} T_{Stk_{i}}, \text{ where } n = \text{the number of points} \qquad \qquad \text{Equation 16}$$

$$B_{wo} = \frac{V_{cond}}{V_{cond} + V_{std(imp)}} \qquad \qquad \text{Equation 17}$$

$$V_{cond} = 0.04707 \times V_{gain} \qquad \qquad \text{Equation 18}$$

$$Iso_{i} = \frac{v_{nzi}}{v_{i}} \qquad \qquad \text{Equation 19}$$

$$Iso_{i} = \frac{v_{nzi}}{v_{i}} \qquad \qquad \text{Equation 20}$$

$$v_{i} = 85.49 \times c_{p} \times \sqrt{\Delta p_{i}} \times \sqrt{\frac{(T_{Stk_{i}} + 459.67)}{(P_{Stk} \times M_{W})}} \qquad \qquad \text{Equation 21}$$

$$v_{nzi} = \frac{(V_{i} - V_{i-1}) \times y \times (T_{Stk_{i}} + 459.67) \times (P_{B} + \frac{\Delta H_{i(act)}}{13.6})}{A_{n} \times t_{i} \times 60 \times (T_{m(i)} + 459.67) \times P_{Stk} \times (1 - B_{wo})} \qquad \qquad \text{Equation 22}$$

$$P_{stk} = P_B + \frac{P_g}{13.6}$$
 Equation 23

$$v_{stk} = \frac{1}{n} \sum_{i=1}^{n} v_i$$
 , where $n =$ the number of points

Equation 24

$$v_{nz} = \frac{1}{n} \sum_{i=1}^{n} v_{nzi}$$
, where $n =$ the number of points

Equation 25

Where,

 $A_n = Nozzle area (ft^2)$

 d_n = Diameter of nozzle (inches) c_p = Pitot coefficient (dimensionless)

 Δp_i = Individual point differential pressures (inches of H_2O)

 T_{Stk} = Average flue gas temperature (°F), second subscript i, indicates individual

point measurements

 $\Delta H_{i(act)}$ = Calculated individual point orifice pressures (inches of H₂O)

 P_g = Stack Static pressure (inches of H_2O) P_{stk} = Absolute stack pressure (inches of H_B) M_W = Wet gas molecular weight (g/gmol) M_D = Dry gas molecular weight (g/gmol)

*%CO*₂ = Stack gas carbon dioxide concentration (% dry basis)

 $\%O_2$ = Stack gas oxygen concentration (% dry basis) B_{wo} = Stack gas water vapour, proportion by volume

V_{cond} = Total volume of water vapor collected, corrected to standard conditions

 (ft^3)

 V_{gain} = Condensate gain of impinger contents (mL) P_{std} = Standard pressure (29.92 inches of Hg)

 v_{stk} = Average flue gas velocity (ft/sec)

 v_i = Individual point flue gas velocity (ft/sec)

 v_{nz} = Average velocity at nozzle(ft/sec)

 v_{nzi} = Individual point velocity at nozzle(ft/sec) Iso_i = Individual point isokinetic variation (%)

Iso = Average isokinetic variation (%) R_m = Isokinetic sampling rate (ft^3 /min)

A2.3 Volumetric Flowrate Calculations

$$Q_S = Q_A \times \frac{(T_{Std} + 459.67)}{(T_{Stk} + 459.67)} \times \frac{P_{Stk}}{P_{Std}}$$
 Equation 26
$$Q_A = \frac{v_{stk} \times 60 \times A_{stk}}{35.315}$$
 Equation 27
$$A_{stk} = \pi \left(\frac{d}{24}\right)^2$$
 Equation 28

Where,

 Q_A = Actual flowrate (Am³/min)

 $Qs = Flowrate (m^3/min)$ at standard conditions on a dry basis

 A_{stk} = Area of stack (ft²)

d = Diameter of stack (inches)

A2.4 CEM Calculations

$$[CEM]_i = \frac{(2 \times [CEM]_{mi} - (Z_F + Z_I))}{(S_I + S_F) - (Z_I + Z_F)} \times G_C$$

$$E_A = \left(\frac{A_{IS} - G_C}{G_C}\right) \times 100\%$$

$$Equation 30$$

$$B_{IS} = \left(\frac{S_I - A_{IS}}{R}\right) \times 100\%$$

$$Equation 31$$

$$B_{FS} = \left(\frac{S_F - A_{IS}}{R}\right) \times 100\%$$

$$Equation 32$$

$$B_{IZ} = \left(\frac{Z_I - A_{IZ}}{R}\right) \times 100\%$$

$$Equation 33$$

$$B_{FZ} = \left(\frac{Z_F - A_{IZ}}{R}\right) \times 100\%$$

$$D_S = \left(\frac{S_F - S_I}{R}\right) \times 100\%$$

$$Equation 34$$

$$D_Z = \left(\frac{Z_F - Z_I}{R}\right) \times 100\%$$

$$Equation 35$$

Where:

[CEM]_{mi}

[CEM]_i = One-minute average calibration corrected CEM parameter concentration (ppm or % vol)

= One-minute average measured CEM parameter concentration (ppm or % vol)

S_I = Initial calibration span gas system response (ppm or % vol)

S_F = Final calibration span gas system response (ppm or % vol)

 Z_I = Initial calibration zero gas system response (ppm or % vol)

Z_F = Final calibration zero gas system response (ppm or % vol)

A_{IS} = Initial calibration span gas analyzer response (ppm or % vol)

 A_{IZ} = Final calibration zero gas analyzer response (ppm or % vol)

 E_A = Analyzer calibration error (%)

B_{IS} = Initial system span bias (%)

B_{FS} = Final system span bias (%)

B_{IZ} = Initial system zero bias (%)

 B_{FZ} = Final system zero bias (%)

D_S = Test span drift (%) D_Z = Test zero drift (%)

G_c = Calibration span gas certified concentration (ppm or % vol)

R = Analyzer range (ppm or % vol)

APPENDIX 3 ANALYTICAL DATA

Appendix 3 Analytical Data

GRAVIMETRIC ANALYTICAL RESULTS

Client:All RoadsSample Date:11-Sep-25Source:Baghouse StackLocation:Coquitlam, BC

A. Lanfranco & Associates Standard Operating Procedure:

SOP 1.2.1 Gravimetric determination of total particulate matter

				Blank Corrected Net
	Initial (g)	Final (g)	Net (g)	(g)
Filters				
Run 1	0.3487	0.3484	-0.0003	ND
Run 2	0.3508	0.3500	-0.0008	ND
Run 3	0.3490	0.3487	-0.0003	ND
Blank	0.3484	0.3487	0.0003	
Probe Washes				
Run 1	124.1108	124.1108	0.0000	0.0005
Run 2	119.9087	119.9089	0.0002	0.0007
Run 3	127.1318	127.1317	-0.0001	0.0004
Blank	119.0637	119.0632	-0.0005	
	Run 1	Run 2	Run 3	
Silica Gels	14.5	13.0	12.0	
Task	Personnel	Date	Quality Control	Y/N
Fiter Recovery:	S. Verby	12-Sep-25	Adequate PW volume:	Y
PW Initial Analysis:	S. Verby	12-Sep-25	No sample leakage:	Y
PW, Filter and Gel Final Analysis:	S. Verby	16-Sep-25	Filter not compromised:	Y
Data entered to computer:	C. Lanfranco	24-Sep-25	•	

Comments:

No problems encountered in sample analysis.

APPENDIX 4 FIELD DATA SHEETS

CEM FIELD DATA SHEET

Client Source Date All Roans - Cognillon

Technician Ambient Temp (°C) Barometric Pressure (in. Hg) Trailer ID DS+JG+JC 15°G3-SVNMY BIG TRAILER

	N ₂	H ₂	1 Gas	2 Gas	3 Gas	4 Gas	5 Gas	O ₂	Comb Air	Low Meth	Mid Meth	High Meth
Cylinder#	724		L9P	VHE				109			247	054
Pressure (psi)	1300	1125	200	1300		OST.		1400			1125	9SD
Expiry Date	5-130		41537	5 30 28	(); b:========			7-7-33		2	-6-32	1-18-2
O ₂ (%)								11.05				3,71,233
CO ₂ (%)								10.91				
CO (ppm)			1942	285								
THC (ppm)											4505	875
SO ₂ (ppm)												
NOx (ppm)												

Analyzer	\mathbf{O}_2	CO ₂	со	ТНС	SO ₂	NOx
Range	0-251	0-201	0-500	0-100		

CEM READINGS

Time	Source	02	CO ₂	со	тнс	SO ₂	NOx	Response Time (sec)
1800	MABIENT.	2089						O ₂ Up 45
MANIFOLD	M	0.0	008	2.49				O ₂ Dn 42
/	1 GRS		•	493-75				CO ₂ Up 38
	2 Gas			245.68			- 4	CO ₂ Dn 39
4-75	02/002	1090	11.04					CO Up 34
1800	A1							CO Dn 38
STACK	1/2	103	-08	/83	.04			THC Up 32
	1 GAS			995.8	D .			THC Dn 33
	2 Gas		6	247.22	-			SO ₂ Up
	02/002	10.89	11-01					SO ₂ Dn
	High Moth	,			84.47			NOx Up
	MID Met				94 99			NOx Dn
				, ,	7.47)	-10		
		KU	M # /	19		000		
	N2	00	0.10	602	75			
	2 Gas			25275				
	02/002	1087	11.04		1.00			
	MED Met				11.98			1 V 2
		0	#5					
		KU	12	2	012-	211	>	12 1
	1/12	0/	·/D	13.8	0.98			
	2 (325	10 - 0	// 6	25422				
	02/02	10.88	11.10		11.48			
	MED MOT				4173			

05v (2 0	+2)
----------	-----

CEM FIELD DATA SHEET

Client Source Date

All Roass	- Chantlan .
Rashouse	STACK - CONT.
Sept. 11, 2	025

Technician
Ambient Temp (°C)
Barometric Pressure (in. Hg)
Trailer ID

	N ₂	H ₂	1 Gas	2 Gas	3 Gas	4 Gas	5 Gas	O ₂	Comb Air	Low Meth	Mid Meth	High Meth
Cylinder#												
Pressure (psi)								·				
Expiry Date												
O ₂ (%)												
CO ₂ (%)												
CO (ppm)												
THC (ppm)												
SO ₂ (ppm)												
NOx (ppm)												

Analyzer	O_2	CO ₂	СО	ТНС	SO ₂	NOx
Range						

CEM READINGS

Time	Source	O ₂	CO ₂	со	тнс	SO ₂	NOx	Response Time (sec)
		Run	#3	2/3	096	2236	5	O ₂ Up
	N2	.03	.15	14.27	096			O ₂ Dn
	2 GRS			257.45				CO ₂ Up
	02/102	12.87	11/2					CO ₂ Dn
	MIO Most	(91.8/			CO Up
					, ,			CO Dn
								THC Up
								THC Dn
								SO ₂ Up
								SO ₂ Dn
								NOx Up
								NOx Dn
=		1						
		_						

A. Lanfranco and Associates Inc.

CLIENT // //	200				gras	DIAMETER, IN.	ER, IN. , 3	38	IMPINGER,	INITIAL ,	FINAL	TOTAL GAIN
) Li Li	10000			PROBE S	4-5	පි	188	1	VOLUMES	(mL)	(m)	(mL)
DADAMETER COUNTY	CAS CO.			TOWN TOO	71.1				mp. #1	00	270	
DATE //C. o.	1700001			STATIC PRE	STATIC PRESSURE IN H20	150 1			mp. #2	(00)	00	
OPERATOR:	10 10			STACK DIAMETER	AETER	20	0-1		Imp. #4	00	1	
CONTROL UNIT	18/3	1.03	23	STACK HEIGHT	3HT	B/			Imp. #5	1	-	
		5 7/ @HV	2 KS						lmp. #6		_	
BAROMETRIC PRESSURE, IN. Hg	SURE, IN. Hg	26		INITIAL LEAK TEST	1	210100	2		Upstream Diameters	ameters		
ASSUMED MOISTURE, BW	RE, Bw	80		FINAL LEAK TEST	1	adiols	2		Downstream Diameters	Diameters		
i	D Car Mater &								55.57	1		
_	Dry Gas Meter II	Pitot AP	Orifice AH		- 1	Temperature °F			Pump Vac.	Fyr	Fyrites	
Point 7	125725	N. H.O	IN. H ₂ O	Dry Gas Outlet	Stack	Probe	Вох	Impinger Exit	IN. Hg	CO ₂	O ₂ Vol. %	·
	1226,97	52'	14105	44	192	22	28,	55	6,3			
7	228,72	26	147	25	190					4,0	101	
7	470 77	126	1,73	27	881	282	CSD	88	5.0			
20	1	128	88	7.8	187							
2	732 175	125	1.86	Solo	100	707	287	53	000			
ئى ھ	スパーカルト	122	1,94	120	227	7	C.					
2	129 BK	24	100	200	12/2	000	017	77	i.			
U	00100	4%	100	60	124	0.00	C	2,	0	0 17	1001	
(6)	1547.23	36.	1.80	200	12/0	1		1		210	4 2	
, ,	5	12.	1.00	25	193	250	2126	55				
2	246.60	123	17:53	6	200							
			3									
-	3		150	1735	75.5	9	242	53	6,0			
*	77	77.	100%	250	- 1							
· 13	122 XK	12	11.71	7	190	25/	443	29	600	077	1-1-1	
50	022,00	120	A. 1		XX		. !					
2	インでいる	200	12.0	7		7	12/	83	0			
1	250	127	877	200	1	500	000	12	1			
×	1650,00	120	2011	25	12	1	1	1	40			
U	26106	32	60	75	186	166	1.56	80	0.1	61	(M/	
9		.25	04/	3	100	, ,	1			1	1	
	17/05,19	120	1.76	25	182	258	100	22	2			
10	10 660,70	121	1,00	38	(83							
20:01	一でいいたが											

A. Lanfranco and Associates Inc.

CLIENT	11 120.3	ú			NOZZLE	165	DIAMETER, IN	ER, IN. , 3	338	IMPINGER,	INITIAL ,	FINAL	TOTAL GAIN
200100	011	2			PROBE	45	පි	683	75	VOLUMES	(mL)	(m)	(mL)
SOURCE	SOURCE IS A CHOOSE	,	,							Imp. #1	100	158	
PAKAMEIE	LI KEIN NO OW	わるし	100		PORT LENGTH	H				Imp. #2	1001	140	
DATE //	Solow				STATIC PRE	STATIC PRESSURE, IN. H2O	420	1 - 6	L	lmp. #3	0	5	
OPERA IOR:	1/2/2				STACK DIAMETER	/ETER		84.0		lmp. #4	CAGC		
CONTROL UNIT	8/12/18		7 1603	5	STACK HEIGHT	놨		5/0		lmb. #5			
The Control			S S	36		-				lmp. #6			
BAROMETRI	BARUME I KIC PRESSURE, IN. Hg	12	2		INITIAL LEAK TEST	_]	00/01	1/1		Upstream Diameters	ameters		
ASSUMED M	ASSUMED MOISTURE, BW				FINAL LEAK TEST	TEST 100	Mala	3		Downstream Diameters	Diameters		
ē	-	50								7 1	0#0		
_	Clock Time Dry Gas	Dry Gas Meter II	Pitot AP	Orifice AH			Temperature °F			Pump Vac.	Fyrites	tes	
Point 70,	70°15 267	. 34	IN. H ₂ O	IN. H ₂ O	Dry Gas Outlet	Stack	Probe	Вох	Impinger Exit	IN. Hg	CO ₂	O ₂	
,	76.8.	\$	123	1.65	80	78/	2,0	いたり	200	2,0			
0	0+2	53	121	1.58	20	182		, , ,	,		3.7	14.3	
m'	242	5	.20	1:013	280	183	257	822	35	2,0			
2	243	20	122	1,53	مل	183							
1	ながら	17.0	100	777	4	185	237	JA F	28	5.0			
70	1747	1	123	1.60%	100	187							
4)	37.5	in the	150	1147	20	180	23	727	×	5,5			
8	OX C	the state of the s	100	11	700	182	(0	,	210	10/10	
2)		2	100	200	477	182	181	630	×	0			
	2000	1	126	12/	900	1 XX 's	100		40	1			
11	122	4	120	1,42	28	100	632	130	7.1	,			
		, ,								0			
,	289	42	125	1.79	833	180	280	220	39	200			
2	791	74	,26	1,86	83	185					38	2/2/	
7	195	30	126	1.86	23	186	250	200	29	00			
7	727	25	NX,	100	178	186				0			
~	5000	20	100	2000	73	200	52	200	250	000			
17	7	N	100	1.01	47	100	11/10	SEC	42	1, 7	- C		
Z	202	50	46'	1,97	100	187	477	07.3		110	100	172	
2	200	8	36	10,0	138	221	744	181	4	10.5			
10	2000	38	126	1.86	173	28/		700	100	110			
ŭ	10k	×	125	1:39	12	25	220	180	28				
2	200	08	22:	1458	128	251							
70				0 0									
2													

A. Lanfranco and Associates Inc.

	E	1110			70001						ı		
		へらら			PROBE		පි	NO	157	VOLUMES	(ML)	(mL)	(mL)
SOURCE	SOURCE /SAShow	wase								Imp. #1	100	700	
PARAN	METER / RUN N	OMATICII	2		PORT LENGTH	TH.				Imp. #2	100	1415	
DATE /	11 5001	125			STATIC PRE	STATIC PRESSURE, IN. H2O	420	12/		lmp. #3	0	1	
OPERATOR	TOR:	2 + JC			STACK DIAMETER	4ETER		54,0		Imp. #4	(de	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
CONTI	CONTROL UNIT		1.03	23	STACK HEIGHT	3HT		110.0		lmp. #5		-	
		1	8 / ®H0	75						lmp. #6			
BARO	BAROMETRIC PRESSURE, IN. Hg	S	566		INITIAL LEAK TEST	K TEST	000	1015	1	Upstream Diameters	ameters		
ASSUN	ASSUMED MOISTURE, Bw	E, Bw			FINAL LEAK TEST	TEST	100 W	des		Downstream Diameters	Diameters		
								1		test	SHIC		
		Dry Gas Meter ft	Pitot AP	Orifice AH		[Temperature °F			Pump Vac.	Fyr	Fyrites	
Point	2(136	310,255	IN. H ₂ O	IN. H ₂ O	Dry Gas Outlet	Stack	Probe	Вох	Impinger Exit	IN. Hg	CO ₂	O ₂	
1		311.91/2	,23	1.63	8	ON	250	101	200	5			-
2		213,63	72'	1,56	2	190			0		015	12/1	
7		72 515	120	1/2/2	13	100	257	250	88	5.5			
7		18,87	725	1,55	800	161		1					
1		718 83	> 2 3	1.33	8	181	787	230	28	00			
He		かれたれ	100	110	2	101	9	5					
×		22 25 AD	100	1	100	122	727	0	2	60			
2		27 16	25	32.1	200	100	777	250	22	1	200	(1)	1
07		274,218	,26	1	600	185	1)	7 %	3	1	7767	
//		370,73	.25	84%	23	887	750	252	2	6.2			
12		120, 87	,20	1,43	128	587				1			
4		327,06	123	130	178	881	25	257	58	25		,	
de		277-72	126	186	58	188			180		11/	5.41	
×1.		310.3%	1269	1,36	5	188	12	248	55	2, (
3		278.12	104	4.73	1	1XX	1	100					
~		27.2	112	2000	25	1	2	012	XX XX	1010			
+		247.91	42	1201	200	43/	2	2513	22	10.5			
×,		276.28	£2:	1.94	7	42		-					
В		2471 18	32'	1012	98	28/	250	arc	46	0.0	2/2	143	
0		249,57	.26	181	7	1			-	200			
7		12 30	1,25	1,80	\$	58/	77	256	28	0.0			
4	20.00	163,01	22	1.88	28	681							
	26.32	111		4									
		XX											

APPENDIX 5 CALIBRATION DATA and CERTIFICATIONS

A.Lanfranco & Associates inc.

Meter Box Calibration

English Meter Box Units, English K' Factor

Model #: FE 18 2-Jul-25

0028-020118-1 Serial #: Barometric Pressure: 29.84 (in. Hg) Theoretical Critical Vacuum: 14.08 (in. Hg)

1111111111

For valid test results, the Actual Vacuum should be 1 to 2 in. Hg greater than the Theoretical Critical Vacuum shown above. The Critical Orifice Coefficient, K', must be entered in English units, (ft)^3*(deg R)^0.5/((in.Hg)*(min)).

IMPORTANT IMPORTANT

5 864

166 1

IIVIPU	ĸ

5 732

162.3

	DRY GAS METER READINGS					-CRITICAL ORIFICE READINGS-								
dH (in H2O)	Time (min)	Volume Initial (cu ft)	Volume Final (cu ft)	Volume Total (cu ft)	Initial To Inlet (deg F)	emps. Outlet (deg F)	Final Inlet (deg F)	Temps. Outlet (deg F)	Orifice Serial# (number)	K' Orifice Coefficient (see above)	Actual Vacuum (in Hg)	Aml Initial (deg F)	bient Tempera Final (deg F)	ture Average (deg F)
3.75	24.00	558.207	583.030	24.823	71.0	71.0	75.0	75.0	73	0.8185	16.0	73.0	75.0	74.0
1.95	48.00	583.030	619.120	36.090	75.0	75.0	80.0	80.0	63	0.5956	17.0	75.0	78.0	76.5
1.20	25.00	619.120	633.836	14.716	80.0	80.0	81.0	81.0	55	0.4606	18.0	78.0	79.0	78.5
0.69	25.00	633.836	645.061	11.225	81.0	81.0	82.0	82.0	48	0.3560	20.0	79.0	81.0	80.0
0.35	19.00	645.061	650.963	5.902	82.0	82.0	83.0	83.0	40	0.2408	21.0	81.0	83.0	82.0
				******		****** RES			*****	*****				
DRY GA	S METER			ORIFICE			DRY GAS	METER				ORIFICE		
VOLUME ORRECTED	VOLUME CORRECTED		VOLUME CORRECTED	VOLUME CORRECTED	VOLUME NOMINAL		CALIBRATIO	N FACTOR Y		CAL	IBRATION FA dH@	CTOR		
Vm(std) (cu ft)	Vm(std) (liters)		Vcr(std) (cu ft)	Vcr(std) (liters)	Vcr (cu ft)		Value (number)	Variation (number)		Value (in H2O)	Value (mm H2O)	Variation (in H2O)		Ko (value)
24.741	700.7		25.366	718.4	25.734		1.025	-0.007		1.866	47.38	-0.010		0.705
35.513	1005.7		36.831	1043.0	37.539		1.037	0.005		1.825	46.36	-0.050		0.706
14.374	407.1		14.807	419.3	15.148		1.030	-0.002		1.875	47.62	-0.001		0.702

1.023

1.0323

-0.009

Average dH@---->

2 006

1.875

50.95

47.6

0.131

Average Ko---->

0.684

0.701

TEMPERATURE CALIBRATION										
Calibration Stand		•	CL23A S/N:T-21	Ter	nperature Devic					
Set-Point	St	ack	Hot	Box	Pro	be	lmp	Out	Α	ux
(deg F)	(deg F)	(% diff)	(deg F)	(% diff)	(deg F)	(% diff)	(deg F)	(% diff)	(deg F)	(% diff)
32	32	0.00%	32	0.00%	31	-0.20%	31	-0.20%	31	-0.20%
100	99	-0.18%	99	-0.18%	99	-0.18%	98	-0.36%	98	-0.36%
300	298	-0.26%	299	-0.13%	299	-0.13%	298	-0.26%	298	-0.26%
500	499	-0.10%	498	-0.21%	498	-0.21%	497	-0.31%	498	-0.21%
1000	998	-0.14%	998	-0.14%	997	-0.21%	997	-0.21%	998	-0.14%

6.038

Average Y---->

Note: For Calibration Factor Y, the ratio of the reading of the calibration meter to the dry gas meter, acceptable tolerance of individual values from the average is +-0.02.

For Orifice Calibration Factor dH@, the orifice differential pressure in inches of H20 that equates to 0.75 cfm of air at 68 F and 29.92 inches of Hg, acceptable tolerance of individual values from the average is +-0.2.

For Temperature Devicee, the reading must be within 1.5% of certified calibration standard (absolute temperature) to be acceptable.

Signature: Carter Lanfranco Calibrated by: Justin Ching July 2, 2025

A. LANFRANCO and ASSOCIATES INC.

ENVIRONMENTAL CONSULTANTS

NOZZLE DIAMETER CALIBRATION FORM

Calibrated by: Christian De La O Date: 25-Jun-25

Signature:

Nozzle I.D.	d1	d2	d3	difference	average dia.	average area
	(inch)	(inch)	(inch)	(inch)	(inch)	(ft ²)
ST01	0.1280	0.1264	0.1280	0.0016	0.1275	0.0000886
ST05	0.1700	0.1720	0.1716	0.0020	0.1712	0.0001599
SS-1	0.1710	0.1714	0.1693	0.0021	0.1706	0.0001587
SS-7	0.1711	0.1685	0.1701	0.0026	0.1699	0.0001574
ST11	0.2113	0.2120	0.2115	0.0007	0.2116	0.0002442
SS-8	0.2070	0.2080	0.2065	0.0015	0.2072	0.0002341
ST10	0.2110	0.2109	0.2120	0.0011	0.2113	0.0002435
SS-18	0.2295	0.2310	0.2318	0.0023	0.2308	0.0002905
ST15	0.2409	0.2390	0.2400	0.0019	0.2400	0.0003141
SS-2	0.2370	0.2390	0.2380	0.0020	0.2380	0.0003089
SS-3	0.2415	0.2426	0.2435	0.0020	0.2425	0.0003208
SS-24	0.2417	0.2415	0.2420	0.0005	0.2417	0.0003187
В	0.2413	0.2408	0.2421	0.0013	0.2414	0.0003178
SS-14	0.2450	0.2445	0.2475	0.0030	0.2457	0.0003292
ST30	0.2465	0.2458	0.2441	0.0024	0.2455	0.0003286
ST20	0.2502	0.2498	0.2514	0.0016	0.2505	0.0003422
A	0.2515	0.2521	0.2506	0.0015	0.2514	0.0003447
SS-9	0.2675	0.2669	0.2706	0.0037	0.2683	0.0003927
ST40	0.2830	0.2835	0.2810	0.0025	0.2825	0.0004353
SS-30	0.2915	0.2919	0.2950	0.0035	0.2928	0.0004676
SS-13	0.3003	0.2996	0.3027	0.0031	0.3009	0.0004937
ST60	0.2999	0.3020	0.2990	0.0030	0.3003	0.0004919
ST50	0.3030	0.3044	0.3039	0.0014	0.3038	0.0005033
SS-10	0.3171	0.3209	0.3195	0.0038	0.3192	0.0005556
SS-327	0.3250	0.3278	0.3265	0.0028	0.3264	0.0005812
ST65	0.3332	0.3339	0.3343	0.0011	0.3338	0.0006077
ST66	0.3345	0.3365	0.3350	0.0020	0.3353	0.0006133
ST80	0.3630	0.3665	0.3652	0.0035	0.3649	0.0007262
ST75	0.3656	0.3642	0.3645	0.0014	0.3648	0.0007257
SS-5	0.3661	0.3687	0.3698	0.0037	0.3682	0.0007394
SS-16	0.3719	0.3721	0.3730	0.0011	0.3723	0.0007561
ST76	0.3758	0.3740	0.3745	0.0018	0.3748	0.0007660
ST85	0.3981	0.3960	0.3988	0.0028	0.3976	0.0008624
SS-15	0.4000	0.3986	0.4005	0.0019	0.3997	0.0008714
DD	0.4040	0.4045	0.4039	0.0006	0.4041	0.0008908
SS11	0.4150	0.4178	0.4190	0.0040	0.4173	0.0009496
ST70	0.4250	0.4255	0.4260	0.0010	0.4255	0.0009875
ST86	0.4550	0.4538	0.4562	0.0024	0.4550	0.0011291
C	0.4940	0.4928	0.4951	0.0023	0.4940	0.0013308
SS-491	0.4890	0.4930	0.4928	0.0040	0.4916	0.0013181
SS-49	0.4959	0.4965	0.4954	0.0011	0.4959	0.0013414
SS-6	0.4943	0.4965	0.4950	0.0022	0.4953	0.0013378
SS-492	0.4825	0.4862	0.4839	0.0037	0.4842	0.0012787
ST90	0.4925	0.4932	0.4952	0.0027	0.4936	0.0013290
ST92	0.5001	0.5015	0.5020	0.0019	0.5012	0.0013701
SS-558	0.5535	0.5550	0.5520	0.0030	0.5535	0.0016709
ST96	0.5565	0.5550	0.5525	0.0040	0.5547	0.0016780
SS-635	0.6350	0.6370	0.6330	0.0040	0.6350	0.0021993
SS-12	0.7411	0.7406	0.7400	0.0011	0.7406	0.0029913

Where:

(a) D1, D2, D3 = three different nozzle diameters; each diameter must be measured to within (0.025mm) 0.001 in.

(b) Difference = maximum difference between any two diameters; must be less than or equal to (0.1mm) 0.004 in.

(c) Average = average of D1, D2 and D3

Pitot Tube Calibration

 Date:
 2-Jul-25
 Temp (R): 539

 Pbar (in.Hg):
 29.94
 Dn (in.): 0.25

Pitot ID:	5A-1			
Reference	S-Type	Air	Pitot	Deviation
Pitot	Pitot	Velocity	Coeff.	(absolute)
(in H2O)	(in H2O)	(ft/s)	Ср	
0.070	0.095	17.7	0.8498	0.0054
0.170	0.230	27.5	0.8511	0.0041
0.315	0.420	37.5	0.8574	0.0021
0.595	0.790	51.5	0.8592	0.0039
0.790	1.050	59.3	0.8587	0.0035
		Average:	0.8552	0.0038

Pitot ID:	5A-3			
Reference	S-Type	Air	Pitot	Deviation
Pitot	Pitot	Velocity	Coeff.	(absolute)
(in H2O)	(in H2O)	(ft/s)	Ср	
0.045	0.060	14.2	0.8574	0.0025
0.170	0.230	27.5	0.8511	0.0037
0.300	0.400	36.6	0.8574	0.0025
0.490	0.650	46.7	0.8596	0.0047
0.750	1.020	57.8	0.8489	0.0059
		Average :	0.8549	0.0039
		•		

	Pitot ID:	5A-2			
	Reference	S-Type	Air	Pitot	Deviation
	Pitot	Pitot	Velocity	Coeff.	(absolute)
	(in H2O)	(in H2O)	(ft/s)	Ср	
	0.030	0.040	11.6	0.8574	0.0055
	0.150	0.200	25.8	0.8574	0.0055
	0.315	0.430	37.5	0.8473	0.0045
	0.515	0.700	47.9	0.8492	0.0027
	0.800	1.090	59.7	0.8481	0.0037
			Average:	0.8519	0.0044

Pitot ID:	5A-4			
Reference	S-Type	Air	Pitot	Deviation
Pitot	Pitot	Velocity	Coeff.	(absolute)
(in H2O)	(in H2O) (in H2O)		(ft/s) Cp	
0.030	0.040	11.6	0.8574	0.0078
0.200	0.270	29.8	0.8521	0.0025
0.390	0.540	41.7	0.8413	0.0082
0.610	0.830	52.1	0.8487	0.0009
0.830	1.130	60.8	0.8485	0.0011
		Average :	0.8496	0.0041

Pitot ID:	ST 5A			
Reference	S-Type	Air	Pitot	Deviation
Pitot	Pitot	Velocity	Coeff.	(absolute)
(in H2O)	(in H2O)	(ft/s)	Ср	
0.210	0.290	30.6	0.8425	0.0003
0.375	0.520	40.9	0.8407	0.0020
0.480	0.660	46.2	0.8443	0.0015
0.545	0.750	49.3	0.8439	0.0012
0.630	0.870	53.0	0.8425	0.0003
		Average :	0.8428	0.0011

Pitot ID:	5A-5			
Reference	S-Type	Air	Pitot	Deviation
Pitot	Pitot	Velocity	Coeff.	(absolute)
(in H2O)	(in H2O)	(ft/s)	Ср	
0.025	0.035	10.6	0.8367	0.0008
0.180	0.250	28.3	0.8400	0.0025
0.310	0.430	37.2	0.8406	0.0031
0.470	0.660	45.8	0.8354	0.0021
0.775	1.090	58.8	0.8348	0.0027
		Average:	0.8375	0.0022

Pitot ID:	ST 5B			
Reference	S-Type	Air	Pitot	Deviation
Pitot	Pitot	Velocity	Coeff.	(absolute)
(in H2O)	(in H2O)	(ft/s)	Ср	
0.210	0.290	30.6	0.8425	0.0017
0.360	0.500	40.0	0.8400	0.0007
0.490	0.670	46.7	0.8466	0.0059
0.610	0.860	52.1	0.8338	0.0070
0.700	0.970	55.8	0.8410	0.0002
	•	Average :	0.8408	0.0031

Pitot ID:				
Reference	S-Type	Air	Pitot	Deviation
Pitot	Pitot	Velocity	Coeff.	(absolute)
(in H2O)	(in H2O)	(ft/s)	Ср	
		Average :		·

Calibrated by: Jack Dennis

Signature:

Date: July 2, 2025

^{*} Average absolute deviation must not exceed 0.01.

	BAROMETER CALIBRATION FORM									
		Pbar E	Pbar Env Canada Device (inches of Hg)			Difference				
					Elevation					
Device	Cal Date	(kPa)	(inches of Hg)	Reading	Corrected	(Env Can - Elv Corr)				
LA	2-Jul-25	101.4	29.95	29.88	29.95	0.00				
DS	2-Jul-25	101.4	29.95	29.86	29.93	0.02				
CL	2-Jul-25	101.4	29.95	29.88	29.95	0.00				
JC	2-Jul-25	101.4	29.95	29.88	29.95	0.00				
LF	2-Jul-25	101.4	29.95	29.85	29.92	0.03				
SV	2-Jul-25	101.4	29.95	29.85	29.92	0.03				
CDO	2-Jul-25	101.4	29.95	29.85	29.92	0.03				
JG	2-Jul-25	101.4	29.95	29.85	29.92	0.03				
ML	2-Jul-25	101.4	29.95	29.85	29.92	0.03				
JD	2-Jul-25	101.4	29.95	29.87	29.94	0.01				

Calibrated by: Louis Agassiz Signature: Date: 02-Jul-25

Performance Specification is

Device Corrected for Elevation must be +/- 0.1 " Hg of ENV CANADA SEA-LEVEL Pbar

Enter Environment canada Pressure from their website for Vancouver (link below) and the reading from your barometer on the ground floor of the office.

https://weather.gc.ca/city/pages/bc-74 metric e.html

Calibration Certificate

 Date:
 02-Jul-25
 Insrtument Calibrated:
 Testo 3 (340)

 Calibrated by:
 Louis Agassiz
 Serial #:
 64057016

 Authorizing Signature:
 ALA

Ambient Conditions: Temperature: 8 °C Barometric Pressure: 102.1 kPa Relative Humidity: 77%

A. Lanfranco and Associates Inc. certifies that the described instrument has been inspected and tested following calibration procedures in the Environment Canada Report EPS 1/PG/7 (Revised 2005). Below are the observed readings after calibrations are complete. Calibration checks should be completed at least every 6 months.

	Initial Evalu	ation						
Instrument Reading (vol %)	Calibration Error	Pass/Fail	Notes	Instrument Readir (vol %)	ng Calibration Error	Pass/Fail	Notes	Certified Value (vol %)
0.1	0.10	Pass		0.1	0.10	Pass		0
10.90	0.07	Pass		10.90	0.07	Pass		10.83
20.94	0.02	Pass		20.94	0.02	Pass		20.96
	0.1 10.90	Instrument Reading (vol %) Calibration Error	Reading (vol %) Calibration Error Pass/Fail 0.1 0.10 Pass 10.90 0.07 Pass	Instrument Reading (vol %) Calibration Error Pass/Fail Notes	Instrument Reading (vol %) Calibration Error Pass/Fail Notes (vol %)	Instrument Reading (vol %) Calibration Error Pass/Fail Notes Notes (vol %) Calibration Error	Instrument Reading (vol %) Calibration Error Pass/Fail Notes (vol %) Calibration Error Pass/Fail	Instrument Reading (vol %) Calibration Error Pass/Fail Notes O.1 0.10 Pass 10.90 0.07 Pass Instrument Reading (vol %) Calibration Error Pass/Fail Notes O.1 0.10 Pass 0.1 0.10 Pass 10.90 0.07 Pass

Performance Specification: +/- 1% O₂ (absolute diff)

CO		Initial Evalua	ntion	After Calibration						
Gas	Instrument Reading (ppm)	% Calibration Error	Pass/Fail	Notes	Instrument Read (ppm)	ing % Calibration Error	Pass/Fail	Notes	Certified Value (ppm)	
					1					
Zero	1	0.3%	Pass		0	0.0%	Pass		0	
1 Gas	251	1.2%	Pass		254	0.0%	Pass		254	
2 Gas	495	0.2%	Pass		497	0.6%	Pass		494	
3 Gas	947	0.6%	Pass		955	0.2%	Pass		953	

Performance Specification: +/- 5% of Certified Gas Value

NO		Initial Evalua	ation						
Gas	Instrument Reading (ppm)	% Calibration Error	Pass/Fail	Notes	Instrument Read (ppm)	ing % Calibration Error	Pass/Fail	Notes	Certified Value (ppm)
Gas	reduing (ppin)	76 Calibration Live	1 433/1 411	Notes	(PP)	78 Calibration Error	r a55/1 all	Notes	(PP)
Zero	1	0.3%	Pass		0	0.0%	Pass		0
1 Gas	43	4.0%	Pass		45	0.4%	Pass		44.8
2 Gas	85	4.6%	Pass		90	1.0%	Pass		89.1
3 Gas	241	3.4%	Pass		250	0.2%	Pass		249.6

Performance Specification: +/- 5% of Certified Gas Value

NIST Traceable Calibration Gases:

Cylinder	Cylinder ID Number	Certification Date	Expiration Date	Cylinder Pressure (PSI)	NO (ppm)	O ₂ (Vol. %)	CO (ppm)
Zero Gas (N ₂)	353			500	0	0	0
1 Gas	435	2023-12-19	2031-12-20	250	44.81	0	254.1
2 Gas	K9P	2024-04-15	2032-04-15	1200	89.11	0	494.2
3 Gas	K2H	2024-05-22	2032-05-22	1600	249.6	0	952.9
O_2/CO_2	A1M	2024-03-14	2032-03-14	500	0	10.83	0

Note: National Institute of Standards and Technology traceable certificates are available upon request.

A. LANFRANCO and ASSOCIATES INC.

ENVIRONMENTAL CONSULTANTS

TEMPERATURE CALIBRATION FORM

Calibrated by: Christian De La O

2-Jul-25 Date:

Carter Lanfranco Signature:

TEMPERATURE DEVICE CALIBRATIONS

Reference Device								Temp	erature Set	tings (degre	es F)					
Model CL23A Cali	brator		3	32	10	00	2	00	3	00	5	00	8	00	17	700
Device	ALA#	Serial #	Reading	Variation	Reading	Variation	Reading	Variation	Reading	Variation	Reading	Variation	Reading	Variation	Reading	Variation
TPI 341K	7	20314590036	_	-6.51%	_	-17.87%		-30.32%	_	-39.49%	_	-52.10%	_	-63.51%		-78.72%
TPI 341K	8	20313490047	30.8	-0.24%	99.1	-0.16%	198.6	-0.21%	298.1	-0.25%	497.7	-0.24%	796.9	-0.25%	1695	-0.23%
TPI 341K	11	20345510024	31.6	-0.08%	99.7	-0.05%	199.7	-0.05%	299.1	-0.12%	498.5	-0.16%	798.5	-0.12%	1696	-0.19%
TPI 341K	12	20345510031		-6.51%		-17.87%		-30.32%		-39.49%		-52.10%		-63.51%		-78.72%
TPI 341K	18	20329480036		-6.51%		-17.87%		-30.32%		-39.49%		-52.10%		-63.51%		-78.72%
TPI 341K	20	20329480013	31	-0.20%	99.5	-0.09%	199.1	-0.14%	298.6	-0.18%	498.6	-0.15%	798.2	-0.14%	1698	-0.09%
TPI 341K	22	20329480041	30.4	-0.33%	98.4	-0.29%	198	-0.30%	298.1	-0.25%	497.4	-0.27%	797.3	-0.21%	1696	-0.19%
TPI 341K	24	20142030017		-6.51%		-17.87%		-30.32%		-39.49%		-52.10%		-63.51%		-78.72%
TPI 341K	26	20345510036		-6.51%		-17.87%		-30.32%		-39.49%		-52.10%		-63.51%		-78.72%
TPI 341K	28	20142030009		-6.51%		-17.87%		-30.32%		-39.49%		-52.10%		-63.51%		-78.72%
TPI 341K	30	20345510023		-6.51%		-17.87%		-30.32%		-39.49%		-52.10%		-63.51%		-78.72%
TPI 341K	32	20142030028	28.9	-0.63%	97.6	-0.43%	198.4	-0.24%	298.4	-0.21%	498.5	-0.16%	798.4	-0.13%	1697	-0.14%
Reference device is	a NIST c	ertified digital the	ermocouple	calibrator		•		•				•		-		

Variation expressed as a percentage of the absolute temperature must be within 1.5 %

MOUNT ROYAL UNIVERSITY

Faculty of Continuing Education and Extension

Jeremy Shawn Gibbs

has successfully completed

Stack Sampling

35 Hours / 2019

May 22, 2019

Date

Conflict of Interest Disclosure Statement

A qualified professional ¹ providing services to either the Ministry of Environment and Climate Change Strategy ("ministry"), or to a regulated person for the purpose of obtaining an authorization from the ministry, or pursuant to a requirement imposed under the *Environmental Management Act*, the *Integrated Pest Management Act* or the *Park Act* has a real or perceived conflict of interest when the qualified professional, or their relatives, close associates or personal friends have a financial or other interest in the outcome of the work being performed.

A real or perceived conflict of interest occurs when a qualified professional has

- a) an ownership interest in the regulated person's business;
- an opportunity to influence a decision that leads to financial benefits from the regulated person or their business other than a standard fee for service (e.g. bonuses, stock options, other profit sharing arrangements);
- c) a personal or professional interest in a specific outcome;
- d) the promise of a long term or ongoing business relationship with the regulated person, that is contingent upon a specific outcome of work;
- e) a spouse or other family member who will benefit from a specific outcome; or
- f) any other interest that could be perceived as a threat to the independence or objectivity of the qualified professional in performing a duty or function.

Qualified professionals who work under ministry legislation must take care in the conduct of their work that potential conflicts of interest within their control are avoided or mitigated. Precise rules in conflict of interest are not possible and professionals must rely on guidance of their professional associations, their common sense, conscience and sense of personal integrity.

their common sense, conscience and sense of personal in	rtegrity.
<u>Declaration</u>	
I Jeremy Gibbs as a me	ember of Air and Waste Management Association
declare	
Select one of the following:	
Absence from conflict of interest	
Other than the standard fee I will receive for my p	rofessional services, I have no financial or
other interest in the outcome of this project	. I further declare that should a
conflict of interest arise in the future during the co	ourse of this work, I will fully disclose the
circumstances in writing and without delay to Mr. Sajid Barlas	, erring on the side of caution.

☐ Real or perceived co	onflict of interest
Description and nat	ure of conflict(s):
I will maintain my o and standards of pr	bjectivity, conducting my work in accordance with my Code of Ethics actice.
	ke the following steps to mitigate the real or perceived conflict(s) I nsure the public interest remains paramount:
	dge that this disclosure may be interpreted as a threat to my will be considered by the statutory decision maker accordingly.

This conflict of interest disclosure statement is collected under section 26(c) of the *Freedom of Information and Protection of Privacy Act* for the purposes of increasing government transparency and ensuring professional ethics and accountability. By signing and submitting this statement you consent to its publication and its disclosure outside of Canada. This consent is valid from the date submitted and cannot be revoked. If you have any questions about the collection, use or disclosure of your personal information please contact the Ministry of Environment and Climate Change Strategy Headquarters Office at 1-800-663-7867.

Signature:

Print name

Date: Dec.16, 2020

Witnessed by:

Mark Lanfranco
Print name:

¹Qualified Professional, in relation to a duty or function under ministry legislation, means an individual who

a) is registered in British Columbia with a professional association, is acting under that organization's code of ethics, and is subject to disciplinary action by that association, and

b) through suitable education, experience, accreditation and knowledge, may reasonably be relied on to provide advice within his or her area of expertise, which area of expertise is applicable to the duty or function.

Declaration of Competency

The Ministry of Environment and Climate Change Strategy relies on the work, advice, recommendations and in some cases decision making of qualified professionals¹, under government's professional reliance regime. With this comes an assumption that professionals who undertake work in relation to ministry legislation, regulations and codes of practice have the knowledge, experience and objectivity necessary to fulfill this role.

knowledge, experience and objectivity necessary to fulfill this role.						
1. Name of Qualified Professional Jeverny Obles						
Title Environmental technician						
2. Are you a registered member of a professional association in B.C.? ☐ Yes ☐ No						
Name of Association:Registration #						
3. Brief description of professional services: Environmental Consultant Specialize in Gir and atmospheric Sciences						
This declaration of competency is collected under section 26(c) of the <i>Freedom of Information and Protection of Privacy Act</i> for the purposes of increasing government transparency and ensuring professional ethics and accountability. By signing and submitting this statement you consent to its publication and its disclosure outside of Canada. This consent is valid from the date submitted and cannot be revoked. If you have any questions about the collection, use or disclosure of your personal information please contact the Ministry of Environment and Climate Change Strategy Headquarters Office at 1-800-663-7867.						
<u>Declaration</u>						
I am a qualified professional with the knowledge, skills and experience to provide expert information, advice and/or recommendations in relation to the specific work described above. Signature: Witnessed by:						
* home All						
Print Name: Deremy 6.45 Print Name: Connoc Jaan						
Date signed: Nav 1 2020						

- a) is registered in British Columbia with a professional association, is acting under that organization's code of ethics, and is subject to disciplinary action by that association, and
- b) through suitable education, experience, accreditation and knowledge, may reasonably be relied on to provide advice within his or her area of expertise, which area of expertise is applicable to the duty or function.

 $^{^{}f 1}$ Qualified Professional, in relation to a duty or function under ministry legislation, means an individual who

Justin Ching

has successfully completed

Stack Sampling

The Faculty of Continuing Education

Mount Royal University

30 hours | May 26, 2023

Dimitra Fotopoulos, Vice Dean Professional and Continuing Education

Conflict of Interest Disclosure Statement

A qualified professional ¹ providing services to either the Ministry of Environment and Climate Change Strategy ("ministry"), or to a regulated person for the purpose of obtaining an authorization from the ministry, or pursuant to a requirement imposed under the *Environmental Management Act*, the *Integrated Pest Management Act* or the *Park Act* has a real or perceived conflict of interest when the qualified professional, or their relatives, close associates or personal friends have a financial or other interest in the outcome of the work being performed.

A real or perceived conflict of interest occurs when a qualified professional has

- a) an ownership interest in the regulated person's business;
- b) an opportunity to influence a decision that leads to financial benefits from the regulated person or their business other than a standard fee for service (e.g. bonuses, stock options, other profit sharing arrangements);
- c) a personal or professional interest in a specific outcome;
- d) the promise of a long term or ongoing business relationship with the regulated person, that is contingent upon a specific outcome of work;
- e) a spouse or other family member who will benefit from a specific outcome; or
- f) any other interest that could be perceived as a threat to the independence or objectivity of the qualified professional in performing a duty or function.

Qualified professionals who work under ministry legislation must take care in the conduct of their work that potential conflicts of interest within their control are avoided or mitigated. Precise rules in conflict of interest are not possible and professionals must rely on guidance of their professional associations, their common sense, conscience and sense of personal integrity.

\square Real or perceived conflict of interest	t
Description and nature of conflict(s)):
I will maintain my objectivity, condu	acting my work in accordance with my Code of Ethics
In addition, I will take the following have disclosed, to ensure the public	steps to mitigate the real or perceived conflict(s) I interest remains paramount:
•	closure may be interpreted as a threat to my ed by the statutory decision maker accordingly.
Information and Protection of Privacy Act transparency and ensuring professional en statement you consent to its publication a valid from the date submitted and cannot	ent is collected under section 26(c) of the <i>Freedom of</i> for the purposes of increasing government thics and accountability. By signing and submitting this and its disclosure outside of Canada. This consent is the revoked. If you have any questions about the anal information please contact the Ministry of the Headquarters Office at 1-800-663-7867.
Signature:	Witnessed by:
x Justin Ching	<u>x</u>
Print name: Justin Ching	Mark Lanfranco Print name:
Date: June 28, 2023	

¹Qualified Professional, in relation to a duty or function under ministry legislation, means an individual who

a) is registered in British Columbia with a professional association, is acting under that organization's code of ethics, and is subject to disciplinary action by that association, and

b) through suitable education, experience, accreditation and knowledge, may reasonably be relied on to provide advice within his or her area of expertise, which area of expertise is applicable to the duty or function.

Declaration of Competency

The Ministry of Environment and Climate Change Strategy relies on the work, advice, recommendations and in some cases decision making of qualified professionals¹, under government's professional reliance regime. With this comes an assumption that professionals who undertake work in relation to ministry legislation, regulations and codes of practice have the knowledge, experience and objectivity necessary to fulfill this role.

1.	Name of Qualified Professional	Justin Ching						
	Title	Environmental Technician						
2.	Are you a registered member of a	professional association in B.C.? ☐ Yes ☑ No						
	Name of Association:	Registration #						
3.	3. Brief description of professional services:							
	Environmental Technician - sp	pecialising in air and atmospheric sciences						
pro pul car per	This declaration of competency is collected under section 26(c) of the <i>Freedom of Information and Protection of Privacy Act</i> for the purposes of increasing government transparency and ensuring professional ethics and accountability. By signing and submitting this statement you consent to its publication and its disclosure outside of Canada. This consent is valid from the date submitted and cannot be revoked. If you have any questions about the collection, use or disclosure of your personal information please contact the Ministry of Environment and Climate Change Strategy Headquarters Office at 1-800-663-7867.							
		<u>Declaration</u>						
	I am a qualified professional with the knowledge, skills and experience to provide expert information, advice and/or recommendations in relation to the specific work described above.							
Sig	nature:	Witnessed by:						
X	Justin Ching nt Name: Justin Ching	XDaryl Sampson						
Pri	nt Name: Justin Ching	XDaryl Sampson Print Name: Daryl Sampson						
Da	te signed: June 28, 2023							

 $^{^{1}}$ Qualified Professional, in relation to a duty or function under ministry legislation, means an individual who

a) is registered in British Columbia with a professional association, is acting under that organization's code of ethics, and is subject to disciplinary action by that association, and

b) through suitable education, experience, accreditation and knowledge, may reasonably be relied on to provide advice within his or her area of expertise, which area of expertise is applicable to the duty or function.

Faculty of Continuing Education and Extension

Daryl Sampson

has successfully completed

The program of studies and is awarded the certificate in

STACK SAMPLING

May 2005

Date

Dean

Faculty of Continuing Education and Extension

Conflict of Interest Disclosure Statement

A qualified professional ¹ providing services to either the Ministry of Environment and Climate Change Strategy ("ministry"), or to a regulated person for the purpose of obtaining an authorization from the ministry, or pursuant to a requirement imposed under the *Environmental Management Act*, the *Integrated Pest Management Act* or the *Park Act* has a real or perceived conflict of interest when the qualified professional, or their relatives, close associates or personal friends have a financial or other interest in the outcome of the work being performed.

A real or perceived conflict of interest occurs when a qualified professional has

- a) an ownership interest in the regulated person's business;
- b) an opportunity to influence a decision that leads to financial benefits from the regulated person or their business other than a standard fee for service (e.g. bonuses, stock options, other profit sharing arrangements);
- c) a personal or professional interest in a specific outcome;
- d) the promise of a long term or ongoing business relationship with the regulated person, that is contingent upon a specific outcome of work;
- e) a spouse or other family member who will benefit from a specific outcome; or
- f) any other interest that could be perceived as a threat to the independence or objectivity of the qualified professional in performing a duty or function.

Qualified professionals who work under ministry legislation must take care in the conduct of their work that potential conflicts of interest within their control are avoided or mitigated. Precise rules in conflict of interest are not possible and professionals must rely on guidance of their professional associations, their common sense, conscience and sense of personal integrity.

Declaration I Daryl Sampson , as a member of Air and Waste Management Association declare Select one of the following: Absence from conflict of interest Other than the standard fee I will receive for my professional services, I have no financial or other interest in the outcome of this project . I further declare that should a conflict of interest arise in the future during the course of this work, I will fully disclose the circumstances in writing and without delay to Mr. Sajid Barlas , erring on the side of caution.

\square Real or perceived conflict of interest	
Description and nature of conflict(s):	
I will maintain my objectivity, conduction and standards of practice.	ng my work in accordance with my Code of Ethics
In addition, I will take the following ste have disclosed, to ensure the public int	ps to mitigate the real or perceived conflict(s) I erest remains paramount:
	sure may be interpreted as a threat to my by the statutory decision maker accordingly.
Information and Protection of Privacy Act for transparency and ensuring professional ethic statement you consent to its publication and	es and accountability. By signing and submitting this its disclosure outside of Canada. This consent is revoked. If you have any questions about the information please contact the Ministry of
Signature:	Witnessed by:
X Daryl Sampson	Mark Lanfranco
Print name: Daryl Sampson	Print name:
Date: Dec.18, 2020	

¹Qualified Professional, in relation to a duty or function under ministry legislation, means an individual who

a) is registered in British Columbia with a professional association, is acting under that organization's code of ethics, and is subject to disciplinary action by that association, and

b) through suitable education, experience, accreditation and knowledge, may reasonably be relied on to provide advice within his or her area of expertise, which area of expertise is applicable to the duty or function.

Declaration of Competency

The Ministry of Environment and Climate Change Strategy relies on the work, advice, recommendations and in some cases decision making of qualified professionals¹, under government's professional reliance regime. With this comes an assumption that professionals who undertake work in relation to ministry legislation, regulations and codes of practice have the knowledge, experience and objectivity necessary to fulfill this role.

1.	Name of Qualified Professional <u>Daryl</u>	Sampson					
	Title <u>Senio</u>	Environmental Technician/Project Manager					
2.	Are you a registered member of a profes	ssional association in B.C.?					
	Name of Association:	Registration #					
3.	3. Brief description of professional services:						
	Environmental consulting, specializing in air and atmospheric sciences						
pro pu cai pe	ofessional ethics and accountability. By sign blication and its disclosure outside of Can nnot be revoked. If you have any question	increasing government transparency and ensuring gning and submitting this statement you consent to its ada. This consent is valid from the date submitted and as about the collection, use or disclosure of your histry of Environment and Climate Change Strategy					
	<u>1</u>	<u>Declaration</u>					
	I am a qualified professional with the knowledge, skills and experience to provide expert information, advice and/or recommendations in relation to the specific work described above.						
Sig	gnature:	Witnessed by:					
ΧŽ	Daryl Sampson	x Tein Common					
Pri	Daryl Sampson int Name: <u>Daryl Sampson</u>	Print Name: Louis Agassiz					
Da	te signed: November 23, 2020						

 $^{^{1}}$ Qualified Professional, in relation to a duty or function under ministry legislation, means an individual who

a) is registered in British Columbia with a professional association, is acting under that organization's code of ethics, and is subject to disciplinary action by that association, and

b) through suitable education, experience, accreditation and knowledge, may reasonably be relied on to provide advice within his or her area of expertise, which area of expertise is applicable to the duty or function.

DocNumber: 000119242 Praxair

5700 South Alameda Street Los Angeles, CA 90058

Tel: (323) 585-2154 Fax:(714) 542-6689

PGVPID: F22018

CERTIFICATE OF ANALYSIS / EPA PROTOCOL GAS

Customer & Order Information:

A LANFRANCO & ASSOC INC

101 9488 189TH ST

SURREY

BC V4N 4

Praxair Order Number: 54230389

Customer P. O. Number:

Customer Reference Number:

Fill Date:

1/9/2018

Part Number: Lot Number:

NI ME90ME-AS 70086800906

Cylinder Style & Outlet:

AS **CGA 350**

Cylinder Pressure & Volume:

2000 psia 140 cu. ft

Certified Concentration:

Expiration Date: Cylinder Number:

1/18/2026 CC341054 **NIST Traceable** Analytical Uncertainty:

87.5 ppm Balance

METHANE NITROGEN

±1%

Certification Information:

Certification Date: 1/18/2018

Term: 96 Months

Expiration Date: 1/18/2026

This cylinder was certified according to the 2012 EPA Traceability Protocol, Document #EPA-600/R-12/531, using Procedure G1. Do Not Use this Standard if Pressure is less than 100 PSIG.

Analytical Data:

(R=Reference Standard, Z=Zero Gas, C=Gas Candidate)

1. Component: METHANE

Requested Concentration: Certified Concentration:

Instrument Used

Analytical Method: Last Multipoint Calibration 90 ppm 87.5 ppm

HORIBA, FIA-510, 851135122 Flame Ionization Detector

Date:

Conc:

12/19/2017

First Analysis Data:

ppm

0

100.2

0

UOM:

R: 100.3 Z: C:

87.1

C: 87.2 R: 100.2 Mean Test A

87.1

Conc: Conc:

87.606 87.506 87.539 ppm

1/18/2018

87.506

Analyzed by:

Jose Vasduez

Reference Standard Type: Ref. Std. Cylinder #

R:

Z:

UOM:

Ref. Std. Conc.

Ref. Std. Traceable to SRM #:

2751 SRM Sample # 212-09-AL SRM Cylinder # SX-20000

Second Analysis Data: n R. 0 0 Z: 0 0 C:

0

C: 0 Conc: C: 0 Conc: R: Conc: Mean Test Assay:

GMIS

CC211670

100.7 ppm

Date:

0 0 0 ppm

Certified by:

Whitby Spec Gas Plant/Usine 530 Watson Street East Whitby, ON, L1N 5R9 1 888-256-7359

Material No.: 24068858

Lot No.

: 2045297

Cylinder No.

: 4695672Y

Certification Date: 05/02/2025 Expiration Date: 05/01/2030

Certificate of Analysis

Cylinder Size : 300
Cylinder Valve Outlet : 580
Cylinder Pressure (70°F) : 2640 PSIG
Cylinder Contents : 8.3 M3

NITROGEN CEM ZERO 300SZ PURE

Component	Requested Concentration	Actual Concentration
Nitrogen	100 %	99.9995 %
NOX <=0.1 ppm		,
SO2 <= 0.1 ppm		
THC <= 0.1 ppm		
CO <= 0.5 ppm		
CO2 <= 0.5 ppm		
O2 < 5.0 ppm	8	
"Excluding Argon, and Neon"		

Analytical Details:

INMS and NIST traceability through Messer laboratory standard calibration mixtures.

Messer Canada Inc. plant management quality system is ISO 9001 registered. The product furnished under the referenced lot number is certified to contain the component concentration listed above. All values are mole/mole basis gas phase unless otherwise indicated. The reported uncertainty is at the 95% confidence level assuming a normal distribution. Messer Canada Inc. warrants that the above product conforms at time of shipment to the above description. The customers exclusive remedy should any of the products furnished under this certificate of analysis not conform to the manufacturers description shall be to receive replacement of the product or refund of the purchase price.

Digitally Signed & Approved By Analyst: Alberto Donzelli

Edmonton Spec Gas Plant/Usine 12143 68th Street Edmonton AB T5B 1P9 Canada

MEPA METHANE 45PPM N2 BAL 152SZ/ MEPA MÉTHANE 45PPM N2 BAL 152SZ EPA PROTOCOL

Component Composant

Methane / MÉTHANE Nitrogen / AZOTE Nominal Nominale 45 PPM Certified Certifiée 45.05 PPM

BAL

Cylinder Details/ Détails - bouteille:

Cylinder Size/ Taille de la bouteille: 152 Contents/ Capacité: 4.000 M3 Valve Outlet/ Robinet de sortie: 350 Nominal

Pressure/Pression nominale: 2,000 PSG

Analytical Details/ Détails d'analyse:

Certification Accuracy ± 1% Certification de précision ± 1%

Messer Canada Inc. plant management quality system is ISO 9001 registered. The product furnished under the referenced lot number is certified to contain the component concentration listed above. All values are mole/mole basis gas phase unless otherwise indicated. The reported uncertainty is at the 95% confidence level assuming a normal distribution. Messer Canada Inc. warrants that the above product conforms at time of shipment to the above description. The customers exclusive remedy should any of the products furnished under this certificate of analysis not conform to the manufacturers description shall be to receive replacement of the product or refund of the purchase price.

Le système de gestion de la qualité des usines de Messer Canada Inc. a été enregistré avec la Norme internationale ISO 9001. Il est certifié que tout produit fourni, avec un numéro de lot spécifié, contient la concentration d'éléments ci-dessus mentionnés. Toutes les valeurs sont exprimés en mole/ phase gazeuse, sauf indication contraire. Les incertitudes indiquées dans les descriptions sont des incertitudes élargies correspondant à un niveau de confiance d'environ 95 p. 100. Elles sont fondées sur une distribution normale. Messer Canada Inc. 'garantit qu'au moment de l'expédition, le produit est conforme à la description ci-dessus. Si l'un des produits fournis en vertu de ce certificat d'analyse n'est pas conforme à la description du fabricant, le recours exclusif du client sera d'exiger le remboursement ou le remplacement du produit.

To reorder, please quote/ Pour renouveler une commande, veuillez indiquer le code: V24107503

Certificate Date (mm/dd/yy) / Date du certificat (mm/jj/aa) :02/07/2024

Use by / Utilisé par: 02/06/2032

Digitally signed and approved by/ signé électroniquement et approuvé par Analyst/Analyste: Jed Verville

Lot No./ No. lot 1817371

Cylinder No./ No. bouteille CC137247

Code V24107503 Page 1/1

AIR LIQUIDE CANADA INC.

1250, Boul. René-Lévesque West, #1700 - Montréal, QC H3B 5E6

Phone: (514) 933-0303

CERTIFICATE OF ANALYSIS

Grade: EPA Protocol

Work Order Number:

1869644

Cylinder Number:

T2Y1K9P

Part Number:

A1359010

Cylinder Size:

Laboratory:

SPG Calgary - AB

Cylinder Volume:

30AL 4.1 M3

Certification Date:

04/15/2024

Cylinder Pressure:

2000 PSI

Expiration Date:

04/15/2032

Valve Outlet Connection:

CGA 660

Certification performed in reference to EPA document 600/R-12/531 (EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards and G1 protocol (AA for NOX is included in the NO G1 protocol method) - May 2012), using the assay procedures listed and NIST/NTRM traceable standards.

Do not use this cylinder below 100 psi.

ANALYTICAL RESULTS

Component	Nominal Concentration	Actual Concentration	Protocol Method	Total Relative Uncertainty	Assay Dates
CARBON MONOXIDE	500 PPM	494.2 PPM	G1	+/- 0.09 %	04/15/2024
SULFUR DIOXIDE	90 PPM	90.84 PPM	G1	+/- 0.26 %	04/15/2024
NITRIC OXIDE	90 PPM	88.98 PPM	G1	+/- 0.21 %	04/15/2024
NOX	90 PPM	89.11 PPM	G1	+/- 0.21 %	04/15/2024
NITROGEN	BALANCE				

TRACEABILITY

Туре	Lot ID	Cylinder #	Composition	Uncertainty	Expiration Date
GMIS GMIS GMIS	82-124614181-1 160-402793213-1 82-124614181-1	CC338627 CC407330 CC338627	894.5 PPM CO in N2 303.1 PPM SO2 in N2 88.01 PPM NO in N2	+/- 0.8 % +/- 1.2 % +/- 1.0 %	04/25/2025 08/01/2031 04/25/2025
GMIS	54-402589876-1	CC522261	3.209 PPM NO2 in N2	2 +/- 2.0 %	11/29/2025

ANALYTICAL EQUIPMENT

Instrument **Analytical Principle Last Multipoint Calibration** Fourier transform infrared spectroscopy MKS 2031 FT-IR CO: 04/08/2024 MKS 2031 FT-IR Fourier transform infrared spectroscopy SO2: 03/26/2024 MKS 2031 FT-IR Fourier transform infrared spectroscopy NO: 04/05/2024

CERTIFIED BY:

STEVEN SHIEH

Lab Tech.

REVISED BY:

AYMEN OUESLATI Lab Supervisor

Version V3 (4/19/2017)

AIR LIQUIDE CANADA INC.

1250, Boul. René-Lévesque West, #1700 - Montréal, QC

H3B 5E6

Phone: (514) 933-0303

CERTIFICATE OF ANALYSIS Grade: EPA Protocol RATA Class

Work Order Number:

2039753

Cylinder Number:

Cylinder Volume:

T47DLD9

Part Number:

A1358979

Cylinder Size:

Laboratory:

SPG Calgary - AB

30AL

Certification Date:

07/07/2025

4.3 M3 2000 PSI

Expiration Date:

07/07/2033

Cylinder Pressure: **Valve Outlet Connection:**

CGA 590

Certification performed in reference to EPA document 600/R-12/531 (EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards – May 2012), using the assay procedures listed and NIST/NTRM traceable standards.

Do not use this cylinder below 100 psi.

ANALYTICAL RESULTS

Component	Nominal Concentration	Actual Concentration	Protocol Method	Total Relative Uncertainty	Assay Dates
CARBON DIOXIDE OXYGEN	11 % 11 %	11.05 % 10.91 %	G1 G1	+/- 0.06 % +/- 0.02 %	07/07/2025 07/07/2025
NITROGEN	BALANCE				

TRACEABILITY

Туре	Lot ID	Cylinder #	Con	nposition	Uncertainty	Expiration Date
GMIS	160-402793209-1	ALM059645	10.07	% CO2 in N2	+/- 0.5 %	07/31/2031
NTRM	100106	K012714	9.967	% O2 in N2	+/- 0.03 %	03/22/2028

ANALYTICAL EQUIPMENT

Instrument

Analytical Principle

Last Multipoint Calibration

MKS 2031 FT-IR B Servomex 5200 Multi Fourier transform infrared spectroscopy

CO2: 06/23/2025

purpose

Paramagnetic

O2: 07/07/2025

CERTIFIED BY:

TOBI ERINLE

Lab Tech.

REVISED BY:

JASON NGO

Lab Tech.

AIR LIQUIDE CANADA INC.

1250, Boul. René-Lévesque West, #1700 – Montréal, QC H3B 5E6 (514) 933-0303

CERTIFICATE OF ANALYSIS

Grade: EPA Protocol

Work Order Number:

2014211

Cylinder Number:

T267UHE

Part Number:

A1359011

Cylinder Size:

201011

Laboratory:

SPG Calgary - AB

nder Size: 3

30AL 4.1 M3

Certification Date:

05/30/2025

Cylinder Volume: Cylinder Pressure:

2000 PSI

Expiration Date:

05/30/2028

Valve Outlet Connection:

CGA 660

Certification performed in reference to EPA document 600/R-12/531 (EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards and G1 protocol (AA for NOX is included in the NO G1 protocol method) – May 2012), using the assay procedures listed and NIST/NTRM traceable standards.

Do not use this cylinder below 100 psi.

ANALYTICAL RESULTS

Component	Nominal Concentration	Actual Concentration	Protocol Method	Total Relative Uncertainty	Assay Dates
CARBON MONOXIDE	250 ppm	243.5 ppm	G1	+/- 0.40 %	05/30/2025
SULFUR DIOXIDE	40 ppm	40.71 ppm	G1	+/- 0.52 %	05/30/2025
NITRIC OXIDE	45 ppm	44.33 ppm	G1	+/- 0.38 %	05/30/2025
NOX	45 ppm	44.33 ppm	G1	+/- 0.38 %	05/30/2025
NITROGEN	BALANCE				

TRACEABILITY

Туре	Lot ID	Cylinder #	Composition		Uncertainty	Expiration Date
GMIS	1604029297181	CC189026	1005	ppm CO in N2	+/- 0.3 %	04/17/2032
NTRM	170604	CC484566	98.32	ppm SO2 in N2	+/- 0.81%	07/20/2028
PRIMARY	122-403300505-1	CC521584	3.200	ppm NO2 in N2	+/- 5.0 %	04/03/2028
GMIS	1604029297121	EB0062863	98.82	ppm NO in N2	+/- 1.0 %	04/16/2032

ANALYTICAL EQUIPMENT

Instrument

Analytical Principle

Last Multipoint Calibration

MKS 2031 FT-IR(A) MKS 2031 FT-IR(A) MKS 2031 FT-IR(A) Fourier transform infrared spectroscopy Fourier transform infrared spectroscopy Fourier transform infrared spectroscopy CO: 05/30/2025 SO2: 05/30/2025 NO: 05/29/2025

CERTIFIED BY:

STEVEN SHIEH

Lab Tech.

REVISED BY:

AYMEN OUESLATI

Lab Supervisor

Version V3 (4/19/2017)

Canadian Association for Laboratory Accreditation Inc.

Certificate of Accreditation

A. Lanfranco and Associates Inc. 101 - 9488 - 189th Street Surrey, British Columbia

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).

Accreditation No.: 1004232 Issued On: 4/11/2023 Accreditation Date: 2/5/2021 Expiry Date: 10/11/2025

President and CEO

This certificate is the property of the Canadian Association for Laboratory Accreditation Inc. and must be returned on request; reproduction must follow policy in place at date of issue. For the specific tests to which this accreditation applies, please refer to the laboratory's scope of accreditation at www.cala.ca.